Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Louisville Science Center will develop "The World We Create", a 13,000 sq. ft. exhibit which will transform their second floor to an active learning environment where visitors can explore the simplest element of the creative process to the most sophisticated networks available to our society. The activities will be organized into five core exhibit areas: New Way Tunnel, Think Tank, Inventor's Garage, Chemistry Kitchen, and Tech World and will reinforce educational reform activities in math, science, problem- solving, team cooperation, and decision making. In addition to the large number of interactives, there is a substantial technology/telecommunications component known as the Tech Forum. This will serve at the home site for the Kentucky TeleLinking Network (KTLN). The educational objectives of the exhibit were developed under the guidance of prominent formal educators in the state and they address both the education reform goals of the state and national science and math standards. The exhibit has also been developed with direct participation of a number of private sector partners. It is an impressive community effort. The exhibit is scheduled to open in March, 1997.
DATE: -
TEAM MEMBERS: Theresa Mattei Gail Becker Amy Lowen
resource project Informal/Formal Connections
This project develops an 8-week middle-school mathematics module that introduces cryptography, the science of sending secret messages, while teaching and reinforcing the learning of related mathematical concepts. The topics range from the classical encryption systems and the historic context in which they were used through powerful modern encryption systems that provide secrecy in electronic messages today. The module also covers passwords and codes that correct errors in the transmission of information. Public awareness of the importance of cryptography is growing, as is the need to understand the issues involved. The study of cryptography provides an interesting context for students to apply traditional mathematical skills and concepts. Mathematical topics covered include percents, probability, functions, prime numbers, decimals, inverses and modular arithmetic. The main product is a middle-school student book, with accompanying teacher materials. A web site is being developed that supports the activities in this book. Abbreviated modules for Grades 3, 4 and 5 are also being developed, as well as an instructor's guide for adapting the materials for use in informal educational settings such as museums and after-school programs. The development of the module involves piloting and field-testing by experienced classroom teachers from diverse school communities and instructors of informal educational programs. Evaluation includes review by mathematicians and educators, as well as an investigation into the level of students' understanding of the topics studied.
DATE: -
TEAM MEMBERS: Janet Beissinger Vera Pless
resource project Media and Technology
The goal of the project is to produce a one hour television documentary and a series of video teaching modules which explore a wide range of scientific disciplines in an exciting manner by presenting the story of how these disciplines are used in the preparation and racing of an Indianapolis race car. This program will be distributed to a wide audience through its broadcast by PBS and cable sports networks; through dissemination to classrooms and museums nationwide; and through distribution via agencies that focus on bringing educational programs to youth and minorities across the country. We expect to attract a new audience to science, the millions of Americans who are infatuated by automobiles. This is an audience that cuts across age, ethnic and racial distinctions in America today. This exciting story of applied science should also appeal to American youth in a way that more traditional science stories do not. The major scientific disciplines involved in the project are: basic engineering, mathematics and physics, aerodynamics, materials science, mechanics, telemetry and computer aided design. This project is submitted to the Informal Science Education Program. The specific content of this project will be aimed at an audience with little background in science. High-school students and adults should be able to understand all the principles presented. Younger audiences will gain insight into how a knowledge of science is fundamental to a sport that many of them find fascinating.
DATE: -
TEAM MEMBERS: Sanford (Sam) Low Barbara Flagg
resource project Public Programs
The Great Lakes Science Center plans to enhance an existing facility by adding the Great Lakes Situation Room. This addition makes innovative use of live theater techniques to provide interactive programming for the visiting audience. The Great Lakes Science Center is a relatively new addition to the Informal Science arena but the visitation has double the expected projections. The programs for the situation room are: Science and Information Technology Show; Great Lakes Data Quest; My Own House Data Quest; and Mathematics All Around Us. These new programs, linked to the Great Lakes Environment and exhibitions throughout the facility will further enable the visitor to actually learn about science, environment, and technology using a unique format and "state of the arts" tools made available by informational technology. This project will impact a large, diverse audience in the Great Lake's area and beyond. It has the potential for replication in other museums and science centers. The goals of this project are to enhance the visitor's experiences and learning while at the science center. The themes for the programs will explore some popular topics among the visiting audience. This is a three-year project that will quintuple the programming capacity of the theater, enhance its role in providing Informal Science Education, provide new active learning experiences and expand the center's capacity for accommodating larger audiences of families and school students. The cost sharing for this award is 66.5% of the projected total budget.
DATE: -
TEAM MEMBERS: Pauline Fong
resource project Media and Technology
The Reuben H. Fleet Space Center is developing "The Search for Infinity," a large-format film on mathematics and nature. The current concept, based on a film idea developed in collaboration with Sir Arthur C. Clarke, is to center the film on an intelligent computer running an unmanned space probe. By following the actions of the computer, audiences will learn about mathematical fractals and the relationships between fractals and the natural world. A key effect planned for the film will be a prolonged zoom into the endless details of the celebrated Mandelbrot Set fractal. Jeffrey Kirsch, Director of the Reuben H. Fleet Space Center, will be PI and Executive Producer for the film. The Co-Executive Producer will be Christina Schmidlin, Vice-President of XAOS, Inc, one of the world's leading computer graphics studios, and the Producer-Director will be Ronald Fricke. This production team will work with Sir Arthur Clarke to write the treatment for the film. Scientists working directly in the pre-production phase of the project include Ian Stewart, Professor of Mathematics at the University of Warwick, and Rudy Rucker of San Jose State University. Other advisors include: Benoit Mandelbrot, Yale University; Maxine Brown, University of Illinois at Chicago; Bernard Pailthorpe, San Diego Supercomputer Center; and David Brin, Science Fiction author and astrophysicist. During this planning phase the project will: (1) identify subjects that are best suited to illustrate the fractal geometry of nature in large format film; (2) conduct front-end evaluation to assess the potential educational benefits of such a film; (3) write a treatment and develop a storyboard for the film; conduct formative evaluation of the treatment; (4) produce a motion picture sequence to demonstrate the educational power of the large format film medium to convey complicated ideas related to computer processes; and (5) develop interactive web-based activity concepts to exploit the film's distribution in the museum-dominated large format film community.
DATE: -
TEAM MEMBERS: Jeffrey Kirsch
resource project Public Programs
Voyage of Discovery is a comprehensive and innovative project designed to provide K-12 youth in Baltimore City with an introduction to mathematics, engineering, technology, environmental science, and computer and information science, as it relates to the maritime and aerospace industries. The Sankofa Institute, in partnership with the Living Classrooms Foundation and a host of marine, informal science, community, and educational organizations, collaborate to make science relevant for inner-city youth by infusing science across the curriculum and by addressing aspects of history and culture. Youth are introduced to historical, current, and future innovations in shipbuilding as a means to learn the science, mathematics, and history associated with navigation, transportation, environmental science, and shipping. Activities will take place at the Frederick Douglass-Isaac Myers Maritime Park and Museum where students participate in intensive afterschool, Saturday, and summer sessions. Families are invited for pre-session orientation meetings and again at the end of each session to observe student progress. This project will provide over 3,900 K-12 youth with the opportunity to learn mathematics (algebra, geometry, and trigonometry), physics (gravity, density, mechanics), design, and estuarine biology while participating in hands-on sessions. Project deliverables include a 26-foot wooden boat, a working model of a dirigible, a submarine model, and pilot control panel models, all constructed by students and subsequently incorporated into exhibits at the USS Constellation Museum. The project also results in the production of two curricula--one each on celestial navigation and propulsion. Voyage of Discovery informs the literature on inquiry-based informal science education programs and strategies to engage minority and low-income youth in learning science and technology.
DATE: -
TEAM MEMBERS: Sandra Parker Scott Raymond
resource project Public Programs
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
DATE: -
TEAM MEMBERS: Sue Ann Heatherly Maura McLaughlin John Stewart Duncan Lorimer
resource research Professional Development, Conferences, and Networks
As a part of the strategy to reach the NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forum Objective 1.2: Provide resources and opportunities to enable sharing of best practices relevant to SMD education and public outreach (E/PO), the Informal Education Working Group members designed a nationally-distributed online survey to answer the following questions: 1. How, when, where, and for how long do informal educators prefer to receive science, mathematics, engineering, and/or technology content professional development? 2. What are the professional development and
DATE:
TEAM MEMBERS: NASA Science Mission Directorate Education and Public Outreach Forums Informal Education Working Group Lindsay Bartolone Suzanne Gurton Keliann LaConte Andrea Jones
resource research Media and Technology
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
DATE:
TEAM MEMBERS: Utah State University Victor Lee
resource project Media and Technology
This RAPID proposal was submitted in response to the NSF Dear Colleague letter soliciting proposals related to research addressing the Ebola challenge. The PBS NewsHour will produce 8 Television reports and Web coverage of scientists, engineers, mathematicians, and computer and technology experts as they apply their knowledge to tackling the Ebola virus. The programs will be distributed nationally through PBS, the NewsHour website, and multiple social media channels reaching a large national audience. The public needs to be kept informed about the research into Ebola in a way that is understandable to a broad general audience. Current news reports focus primarily on the immediate crisis of the victims and medical personnel while less so on the science of Ebola. The NewsHour programs will instead help people learn about the non-medical, non-clinical care research that can help lead to solutions about Ebola; information that may also be applicable to similar diseases. The videos and web content will show and explain the scientific work being done by some of the leading scientists, engineers, computer experts and big data gatherers. These researchers' stories and work will be told in ways that will be engaging to a large and diverse audience, increasing their knowledge of the scientific, engineering, and mathematical/computer data/modeling work that is critical to solving the Ebola crisis. The PBS NewsHour has significant reach through its nightly national broadcasts, its website, and its large social media following. Over 300 PBS stations broadcast the program each week night reaching 1.4 million people (11% African American and 51% female). The website has 3.8 million unique visitors and there are 575,000 Twitter followers. In addition over 1.5 million registered teachers use the PBS NewsHour educational materials. The videos and transcripts will be consolidated on the NewsHour website where they will exist permanently providing a resource for the public and researchers.
DATE: -
TEAM MEMBERS: Patti Parson