Implementation of a traveling exhibition on the evolution of hierarchy in prehistoric southeastern Europe.
The Field Museum requests support from the National Endowment for the Humanities for the implementation of a traveling exhibition—tentatively titled First Kings of Europe: The Emergence of Hierarchy in the Prehistoric Balkans—about the evolution of hierarchy in prehistoric southeastern Europe. Featuring some of the most compelling archaeological finds from the Neolithic period, Copper Age, Bronze Age, and Iron Age, First Kings will tell the story of how small, autonomous, farming communities of the Neolithic evolved into centralized, hierarchical, and bureaucratic states during the Iron Age, approximately 8,000-2,500 years ago.
Production of an augmented reality app for the Cahokia Mounds historic site and a complementary website.
This project is to produce an augmented reality application for Cahokia Mounds State Historic Site. This experience will enable visitors to see structures, people, and other features of this ancient site through the lens of their smartphone or tablet. There will be extra audio and vision opportunities loaded to the experience as well as a complementary website. The website will include curriculum for school use. Cahokia Mounds State Historic Site is a UNESCO World Heritage and US National Historic Landmark. This project will greatly enhance the visitor's experience and bring awareness of the site.
The goal of exhibition is to share the history of the Spiro culture from its humble beginnings to its rise as one of the premier cultural sites in all of North America. The Spiro people, and their Mississippian peers, are nearly forgotten in the pages of North American history, yet they created one of the most exceptional societies in all of the Americas. This exhibition explores the archaeological and historical data connecting the Spiro site to other communities throughout North and Central America, discusses the Spiroan community and religious activities, and highlights the enduring legacy of Native Americans today who are descended from Mississippian cultural groups. This 200-object exhibition will include a publication, symposium, and website, all of which was developed in collaboration with the Caddo Nation, the Wichita and Affiliated Tribes, and scholars from over a dozen universities and museums from across the United States.
DATE:
-
TEAM MEMBERS:
Eric Singleton
resourceprojectProfessional Development, Conferences, and Networks
The informal science education (ISE) sector has an important role to play in addressing current societal issues, including changes in environmental conditions, systemic poverty, and societal responses to natural and manmade disasters. These complex social problems require engaging all sectors of society in deep discussions around science, engineering, technology, and mathematics (STEM) and inclusion, diversity, equity, and access (IDEA). To do this, ISE professionals need training in how to bring in diverse perspectives, support inclusive learning, and provide equal access to institutional policymaking, practices and systems. People from different backgrounds within informal science institutions (ISIs) and local communities bring new perspectives, identify new needs, and foster innovation. This broadening of perspectives is critical to address the complex social problems of the 21st century. A key part of the needed transformations in informal science institutions is the preparation of change agents within the ISE sector capable of reimagining what just and equitable informal science institutions might look like. iPAGE 2.0 is an NSF Advancing Informal STEM Learning (AISL) Innovations in Development project conducted by the Science Museum of Minnesota and the Garibay Group in concert with 27 ISIs from across the US. The overarching goal of the project is to support transformative change toward IDEA in the ISE sector. The project is based on an extension service model of knowledge diffusion which seeks to bridge the knowledge-to-action gap by creating intermediaries that can translate research into practical innovations that can be used by practitioners in ISIs. The project brings together teams of strategically placed individuals within ISIs and prepares them to work with their colleagues to enact research-based practices and practical organizational changes toward greater equity and diversity. This project is funded by the AISL program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This ISE professional development initiative will work with annual first-year cohorts consisting of leadership teams from 4-6 ISIs. Each new cohort will spend 11 days together in a 5-day institute and three 2-day colloquia either virtually or at the Science Museum of Minnesota. Individuals and teams will adapt, implement, and refine ideas, strategies, and tools from the iPAGE 2.0 framework for use within their specific ISI context and broader professional networks and engage in ongoing communication and consultation with the iPAGE 2.0 community. All individuals on the team will develop skills, such as communication and collaboration expertise, to function as change agents acting to transform their organizations with respect to inclusion, diversity, equity, and access (IDEA) in STEM. Participants from previous cohorts will continue their roles as change agents and enhance learning in the iPAGE 2.0 community by sharing what they have learned at iPAGE 2.0 colloquia. The iPAGE 2.0 framework focuses on developing participants' understanding of 1) how structural inequalities function to reproduce social advantage and disadvantage within ISIs and the ISE sector; 2) the barriers, supports, and transmission vectors that contribute to or inhibit a continued shift in the sector toward IDEA within a network of practitioners, organizations, evaluators and researchers; and 3) how to prepare and support diversity change agents within the network. The project will employ a creative evaluation approach that combines developmental, principles-focused, arts-based, and transformative evaluation and an interactive, mixed-methods research study grounded in culturally responsive methodologies to address central questions concerning individual, organizational, and sector change. The project's primary audience is ISE professionals, and the secondary audience is researchers and evaluators working within the ISE sector. The project will work directly with an estimated 122 individuals from 27 ISIs.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This AISL Pilots and Feasibility project will study the data science learning that takes place as members of the public explore and analyze open civic data related to their everyday lives. Government services, such as education, transportation, and non-emergency municipal requests, are becoming increasingly digital. Generally, program workshops and events may be able to support participants in using such data to answer their own questions, such as: "How do City agencies respond to noise in my neighborhood?" and "How do waste and recycling services in my neighborhood compare with others?" This project seeks to understanding how such programs are designed and facilitated to support diverse communities in accessing and meaningfully analyzing data will promote innovation and knowledge building in informal data science education. The team will begin by summarizing best practices in data science education from a variety of fields. Next they will explore the design and impacts of two programs in New York City, a leader in publicly available Open Data initiatives. This phase will explore activities and facilitation approaches, participants' objectives and data literacy skills practice, and begin to identify potential barriers to entry and levels of participation. Finally, the team will build capacity for other similar organizations to explore and understand their impacts on community members' engagement with civic data. This pilot study will establish preliminary evidence of the effectiveness of these programs, and in turn, inform future research into the identifying and amplifying best practices to support public engagement with data.
This research team will begin by synthesizing data science learning best practices based on varied literatures and surveys with academic and practitioner experts.
Synthesis results will be applied as a lens to gather preliminary evidence regarding the impacts of two programs on participants' data science practices and understanding of the nature of data in the context of civics. The programs include one offered by the Mayor's Office of Data Analytics (MODA), which is the NYC agency with overall responsibility for the City's Open Data programs, and BetaNYC, a leading nonprofit organization working to improve lives through civic design, technology, and engagement with government open data. The research design triangulates ethnographic observations and artifacts, pre and post adapted surveys, and interviews with participants and facilitators. Researchers will identify programmatic metrics and adapts existing measures to assess various outcomes related to public engagement with data, including: question formulation, data set selection and manipulation, the use of data to make inferences, and understanding variability, sampling and context. These metrics will be shared through an initial assessment framework for data science learning in the context of community engagement with civic open data. Researchers will also begin to identify barriers to broader participation through literature synthesis, interviews with participants and facilitators, and conversations with other organizations in our networks, such as NYC Community Boards. Findings will determine the suitability of the programs under study and inform future research to identify and amplify best practices in supporting public engagement with data.
This project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
An ecosystems model of learning suggests there are critical partners within and across a community that support learning across the lifespan. These school-community partnerships, developed with shared accountability and goals, are essential to rural students given the lack of economic and geographic access to such services. Youth in rural areas may have limited opportunities to engage with professionals. The team proposes to overcome this gap by capitalizing on the wide-spread interest in archaeology to teach critical thinking using STEM concepts and testing components of a partnership program. This project will advance knowledge on multidisciplinary STEM education by iteratively developing and researching an after-school program in which youth engage in multidisciplinary inquiry in the context of archeology. Mentored by archaeologists, rural youth and citizen scientists will use concepts and tools drawn from biology, ecology, geospatial science, mathematics, physics, and data science to identify and answer questions related to the history of their local region. An outcome of this project will be a road map for moving from a feasibility project to a larger implementation project locally and an understanding of community partnerships engaging more broadly.
Researchers at SUNY Binghamton will conduct a mixed-methods research study that examines the ways in which participation in a multidisciplinary after-school archaeology program supports the development of STEM identities among rural youth in sixth through eighth grades. The research team will use content analysis to analyze field notes from observations, as well as transcripts from focus groups and interviews with the youth. They will use inferential statistics to explore changes in the youths' STEM identity using an identity survey, which will be administered to the youth before and after participation in the program. Additionally, the research team will conduct qualitative research that explores shifts in the afterschool program providers' perceptions about supporting middle school youth as STEM learners. The program providers are comprised of graduate and undergraduate archaeology students, citizen scientists, and professional archaeologists. The course modules developed for the after-school program will be disseminated through professional networks and organizations dedicated to archaeologists and informal educators, and empirical findings will be shared widely via peer-reviewed publications. This project is funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This Pilots and Feasability Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.
The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
There is a dearth of prominent STEM role models for underrepresented populations. For example, according to a 2017 survey, only 3.1% of physicists in the United States are Black, only 2.1% are Hispanic, and only 0.5% are Native American. The project will help bridge these gaps by developing exhibits that include simulations of historical scientific experiments enacted by little-known scientists of color, virtual reality encounters that immerse participants in the scientists' discovery process, and other content that allows visitors to interact with the exhibits and explore the exhibits' themes. The project will develop transportable, interactive exhibits focusing on light: how we perceive light, sources of light from light bulbs to stars, uses of real and artificial light in human endeavors, and past and current STEM innovators whose work helps us understand, create, and harness light now. The exhibits will be developed in three stages, each exploring a characteristic of light (Color, Energy, or Time). Each theme will be explored via multiple deliveries: short documentary and animated films, virtual reality experiences, interactive "photobooths," and technology-based inquiry activities. The exhibit components will be copied at seven additional sites, which will host the exhibits for their audiences, and the project's digital assets will enable other STEM learning organizations to duplicate the exhibits. The exhibits will be designed to address common gaps in understanding, among adults as well as younger learners, about light. What light really is and does, in scientific terms, is one type of hidden story these exhibits will convey to general audiences. Two other types of science stories the exhibits will tell: how contemporary research related to light, particularly in astrophysics, is unveiling the hidden stories of our universe; and hidden stories of STEM innovators, past and present, women and men, from diverse backgrounds. These stories will provide needed role models for the adolescent learners, helping them learn complex STEM content while showing them how scientific research is conducted and the diverse community of people who can contribute to STEM innovations and discoveries.
The project deliverables will be designed to present complex physics content through coherent, immersive, and embodied learning experiences that have been demonstrated to promote engagement and deeper learning. The project will research whether participants, through interacting with these exhibits, can begin to integrate discrete ideas and make connections with complex scientific content that would be difficult without technology support. For example, students and other novices often lack the expertise necessary to make distinctions between what is needed and what is extra within scientific problems. The proposed study follows a Design-Based Research (DBR) approach characterized by iterative cycles of data collection, analysis, and reflection to inform the design of educational innovations and advance educational theory. Project research includes conceiving, building, and testing iterative phases, which will enable the project to capture the complexity of learning and engagement in informal learning settings. Research participants will complete a range of research activities, including focus group interviews, observation, and pre-post assessment of science content knowledge and dispositions.
By showcasing such role models and informing about related STEM content, this project will widen perspectives of audiences in informal learning settings, particularly adolescents from groups underrepresented in STEM fields. Research findings and methodologies will be shared widely in the informal STEM learning community, building the field's knowledge of effective ways to broaden participation in informal science learning, and thus increase broaden participation in and preparation for the STEM-based workforce.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Todd BoyetteJill HammJanice AndersonCrystal Harden
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This Research in Service to Practice project will study how visual immersion and interactivity in augmented reality (AR) affects visitors' engagement and understanding of science. The research involves creating different versions of an AR exhibit to communicate paleontology research from the La Brea Tar Pits to the general public. Different versions of the exhibit will be compared to learn how design choices for immersion and interactivity impact visitors' engagement and understanding of science. The result of this study should be a model to follow for similar public exhibits, as well as design principles that generalize to AR experiences for a broader range of informal learning environments. This project will also demonstrate and report on specific AR mechanisms that help visitors understand the scientific process and increase knowledge about paleontology research.
The study includes a user-centered design and evaluation process with both formative and comparative studies. This project investigates two high-level design factors for mobile AR: visual immersion and interactivity. These impact the learning experience and the development so extensively that multiple versions are seldom compared. These factors also have unique considerations for informal settings, such as how to balance immersion against situational awareness (e.g., 3D viewers reduce field of view). One goal of this project is to systematically compare qualitatively different AR designs that convey equivalent science content and study these tradeoffs empirically. The second goal is to leverage these findings to publicly release an AR experience that promotes engagement, increases understanding of science, and reduces scientific misconceptions. This research will also contribute to understanding usability and logistical issues for different AR designs for public, outdoor, informal settings.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Emily LindseyBenjamin NyeGale SinatraWilliam Swartout
The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.
This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
In this project, education researchers, environmental scientists, and educators will develop a computer tool to let STEM educators and curriculum developers build local environmental science models. The system will use data about land use to automatically construct map-based simulations of any area in the United States. Users will be able to choose from a range of environmental and economic issues to include in these models. The system will create simulations that ask students to change to patterns of land use -- for example, increasing land zoned for housing, or open land, or industrial development -- to try to meet environmental and social goals. As a result, students will be able to learn about the interaction of environmental and economic issues relevant to their own city, town, neighborhood, or region. These map-based simulations will be incorporated into an existing science, technology, engineering, and mathematics (STEM) education tool, Land Science, in which learners work in a fictional planning office to study how zoning affects economic and environmental issues in a community. Research has shown that Land Science is mode effective when learners are exploring issues in an area near their home, and the current study will investigate how and why local simulations improve environmental science learning. This project is funded by the Advancing Informal STEM Learning (AISL) program which supports work to enhance learning in informal environments by funding innovative research, approaches, and resources for use in a variety of settings.
In this project, the research team will build, test, and deploy a toolkit that will allow informal STEM educators and developers of informal STEM programming to easily adapt an existing environmental science learning environment, which consists of a place-based virtual internship in urban planning and ecology, to their local contexts, learning objectives, and learner populations. Land Science is a virtual internship in which young people explore the environmental and socio-economic impacts of land-use decisions. To do so, they play the role of interns at an urban planning firm developing a new land-use proposal for the city of Lowell, Massachusetts: they read reports, virtually visit sites, determine stakeholder priorities, and use a geographic information system (GIS) model to evaluate the socio-economic and environmental impacts of land-use choices. No one plan can satisfy all stakeholders, so learners must compromise to create an effective plan and justify their decisions. Land Science has been shown to improve civic engagement, interest in eco-social issues, and understanding of scientific models, but it is most effective when the location of the virtual internship is in or near the learners' home town. To improve the accessibility and impact of this effective learning intervention, the interdisciplinary research team, which includes learning scientists, land-use experts, and informal STEM educators, will develop a Local Environmental Modeling toolkit, which will allow educators to change the location of the simulation and the stakeholder groups, zoning codes, and environmental and socio-economic indicators included in the land-use model. The system will ensure that the model produced is functional, realistic, and appropriately complex. The localized versions of Land Science produced by informal STEM educators will be used in a range of contexts and locations, allowing the research team to study the effects of an online, place-based learning intervention on environmental science learning, STEM interest and motivation, and civic engagement.
DATE:
-
TEAM MEMBERS:
David ShafferKristen ScopinichHolly GibbsJeffrey Linderoth
Often called "self-plagiarism," text recycling occurs frequently in scientific writing. Over the past decade, increasing numbers of scientific journals have begun using plagiarism detection software to screen submitted manuscripts. As a result, large numbers of cases of text recycling are being identified, yet there is no consensus on what constitutes ethically acceptable practice. Text recycling is thus an increasingly important and controversial ethical issue in scientific communication. However, little actual research has been conducted on text recycling and it is rarely addressed in the ethical training of researchers or in scientific writing textbooks or websites. To promote the ethical and appropriate use of text recycling, this project will be conducted in two phases: In Phase 1, the researchers will investigate the ethical, practical, and legal aspects of text recycling as relevant for professional researchers, students, and publishers. In Phase 2, the investigators will produce educational materials and develop model language for text recycling guidelines and author-publisher contracts that can be adapted by educational institutions, research organizations, and publishers.
This project is a multi-institutional, multidisciplinary investigation of text recycling, the reuse of material from one?s previous work in a new manuscript. In Phase 1, the researchers will investigate questions such as these: What do expert researchers, students, and others involved in scientific communication believe to be appropriate practice, and why? Where is there a clear consensus among experts and where is there substantive disagreement? How often do professional scientists actually recycle material, and in what ways? Under what circumstances does text recycling violate publisher contracts or copyright laws? One facet of this research will involve interviewing and surveying experienced STEM faculty, students, journal editors, and others regarding the ethics of text recycling. A second facet will analyze a corpus of published scientific papers to investigate how researchers recycle text in practice and how this has changed over time. The third facet involves analyzing publisher contracts to better understand the rights of publishers and authors regarding text recycling and to assess their legal validity. In Phase 2, the investigators will use findings from Phase 1 to develop, test, and disseminate two kinds of materials: The first are web and print based instructional materials for STEM students (and others new to STEM research) explaining the ethical, legal, and practical issues involved with text recycling, as well as accompanying documents for faculty, administrators, and librarians. The second are model policies and guidelines for text recycling that address appropriate practice in both academic and professional settings. The investigators will obtain feedback on drafts of these materials from potential users and revise them accordingly, after which they will be disseminated.