The Museum of Science and Industry, Chicago (MSI) will develop museum-based education resources to engage high school age youth in the exploration of climate literacy and Earth systems science through its Teen ACES (Teen Advocates for Community and Environmental Sustainability) project. As the future leaders who will make decisions about the issues they face in their communities, youth participants will be positioned to act as advocates for establishing resilient communities in the Midwest. The project will utilize a variety of resources, including NOAA Science On a Sphere® (SOS) technology and datasets, Great Lakes and local climate assets from the Midwest Regional Climate Center and Illinois-Indiana Sea Grant, and existing local planning guides to develop museum-based youth programming. Teens will explore environmental hazards including severe weather events and temperature extremes, and consider the impact of the Great Lakes on regional climate. The Chicago Metropolitan Agency for Planning, Resilient Chicago, the Institute of Environmental Sustainability at Loyola University Chicago, and the South Metropolitan Higher Education Consortium will advise on the project to support the integration of municipal resiliency plans and their related adaptation and mitigation measures into the program. Teen participants will share their learning with the Chicago community through interactions with public visitors in the Museum, programs at Chicago Public Library branches, and MSI’s teen science program broadcast on Chicago’s public access TV station. Teen facilitated experiences will be tailored for SOS® experiences at MSI. The project will revise content for use in 100 after-school science clubs for students from diverse communities across the Chicago area. Further dissemination to three regional science center partners equipped with SOS® technology (Boonshoft Museum of Discovery in Dayton, Ohio; Science Central in Fort Wayne, Indiana; and Hawthorn Hollow in Kenosha, Wisconsin) will build a foundation of knowledge and resources to adapt materials to meet the needs of their communities and consider how their vulnerabilities and resiliency plans may differ from Chicago.
Children in the Norfolk, Va., area will inherit the second highest sea level rise on the East Coast. In response, the non-profit Elizabeth River Project will prepare one of the first comprehensive youth education programs on climate change resilience on this coast. The Elizabeth River Project, working since 1993 to restore the environmental health of the urban Elizabeth River, will deploy its Dominion Virginia Power Learning Barge, “America’s Greenest Vessel,” and its new urban park, Paradise Creek Nature Park, to empower 21,000 K-12 students over three years to become informed decision makers and environmental stewards, prepared to adapt to rising seas. The project primarily will reach under-served schools in Norfolk and adjoining Portsmouth, Va. Lead science partner will be Old Dominion University, on the forefront of climate change research. Other partners include the Chrysler Museum of Art, ground zero for street flooding that has become routine in Norfolk. A youth strategy for the Elizabeth River “watershed” or drainage area will be disseminated nationally internationally by the City of Norfolk through its participation as one the Rockefeller Foundation’s 100 Resilient Cities. The youth strategy will be used by Norfolk to complement its Norfolk Resilience Strategy, prepared so far with adults in mind.
The Maritime Aquarium at Norwalk is located at the mouth of the Norwalk River where it flows into Long Island Sound. Its mission is to inspire people to appreciate and protect the Sound and the global environment. Over the past decade, a large percentage of the region’s 23 million people living within 50 miles of the Sound were directly affected by severe weather events, providing a timely opportunity to educate students, teachers and the public about community resilience. In a new three-year program, the Maritime Aquarium will deliver education related to environmental hazards, resilience, and the underlying science to schools from ten towns along or near Connecticut’s coast, including eight in the Natural Hazards Mitigation Plan Draft 2016-2021 for Southwestern Connecticut. In these towns as in many coastal regions, the most significant environmental threats are related to the nexus of land and water. To reflect that nexus, education will occur both in the classroom and on the water, aboard the Aquarium’s hybrid-electric research vessel, Spirit of the Sound. An exhibit featuring NOAA educational assets related to threats and resilience will also build environmental literacy as it engages Aquarium visitors. The project will be supported by an advisory board of local educators, planning and emergency management officials, representatives from Connecticut Sea Grant, the Connecticut Institute for Resilience and Climate Adaptation and the Western Connecticut Council of Governments.
The National Ocean Sciences Bowl (NOSB), managed by The Consortium for Ocean Leadership, provides enriched science education and learning through a nationally recognized and highly acclaimed academic competition that increases high school students’ knowledge of the marine sciences, including the science disciplines of biology, chemistry, physics, and geology. The NOSB addresses a national gap in environmental and Earth sciences in K-12 education by introducing high school students to and engaging them in ocean sciences, preparing them for careers in ocean science and other science, technology, engineering and mathematics (STEM). Currently, there are 25 regions in the U.S. that compete in the NOSB, each with their own regional competitions. The regional competitions are coordinated by the Regional Coordinators, who are typically affiliated with a university in their region. Each year approximately 2,000 students from 300 schools across the nation compete for prizes and a trip to the national competition. The goal of this organization is to increase knowledge of the ocean among high school students and, ultimately, magnify the public understanding of ocean research. Students who participate are eligible to apply for the National Ocean Scholar Program.
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous researchers and communities in domestic and international settings. 4 MSU and 2 tribal college student participants engaged research projects with their home communities in the western U.S.—Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, Fort Berthold Mandan/Hidatsa/Arikara—and with Indigenous communities in Mongolia Research was initiated with home communities in spring 2016, and with Indigenous researchers and herder (seminomadic) communities in the Darhad Valley of
DATE:
TEAM MEMBERS:
Kristin RuppelCliff MontagneLisa Lone FightBadamgarav DovchinTaylor ElderCamaleigh Old CoyoteJoaquin Small-RodriguezEsther HallTillie StewartKendra Teague
Part I - At the same time communities all over the US are struggling to deal with climate change, resilience, and environmental justice, the nation faces a shortage of geoscientists who can work on these issues. This shortage is especially acute for marginalized and underserved communities. Gaps in the pathways to careers in geoscience begin as early as middle school?the last time many students encounter Earth science content in the classroom. To address these challenges, this project will create opportunities for students in three diverse communities (Atlanta, GA; San Bernardino, CA; and Oklahoma) to develop their scientific skills and knowledge while working on authentic, local problems as they progress from middle school to college and beyond, into the workforce. Part II - The project design is informed by research findings that students are more engaged and invested in learning science when it is connected to issues of concern to their local community and that use of authentic, mentored, real world research experiences increase retention and persistence. Bringing together partners who have led relevant, successful national efforts with partners in the three regions the project team will design and begin implementation of inclusive pathways that lead from an early interest in Earth to careers that require geoscience skills and knowledge. Each pathway will include multiple opportunities for students to 1) learn geoscience in the context of compelling local issues, 2) use geoscience to address local challenges, and 3) explore geoscience career pathways. Experience gained by initial program partners and regional pilots will be used to create national support structures for developing integrated geoscience pathways and a collective action framework for expanded partnerships.
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.
*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE:
-
TEAM MEMBERS:
Kristin RuppelClifford MontagneLisa Lone Fight
Finding inclusive approaches to broaden the participation of underrepresented communities in the sciences is the focus of this project. The team will create pathways for Native American students from the development of new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. Each partner brings a successful program, based on good practices from the research literature in improving outcomes for underrepresented students and scientists. Together, the researchers will create scientific collaborations that support a pipeline for Native American students from middle school through to graduate school and beyond. In addition, the project will work on building welcoming workplace climates for indigenous researchers within ?traditional Western? organizations. The approach will integrate indigenous and Western knowledge in research collaborations to create more creative, innovative, and culturally relevant science research programs.
This project, Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences, uses the principles of collective impact to create new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. The project collaborators will more strongly integrate indigenous and Western knowledge into collectively-developed research projects. The project partners the Rising Voices: Collaborative Science for Climate Solutions (Rising Voices) and member tribal colleges and communities with Haskell Indian Nations University, the National Center for Atmospheric Research (NCAR), the University of Arizona?s Biosphere 2, and National Center for Atmospheric Research?s Significant Opportunities in Atmospheric Research and Science (SOARS) internship and Global Learning and Observation to Benefit the Environment (GLOBE) citizen science programs. Together, they will build research partnerships between Native American and traditional Western scientists, provide professional development for NCAR and Biosphere 2 scientists on how to engage appropriately with tribal communities, and provide pathways for NA students from middle school through college, to grad school and beyond. The project will connect community-based citizen science programs for middle- and high school youth with undergraduate programs at Haskell Indian Nations University and University of Arizona, and with summer research internship experiences for undergraduates and graduate students that address topics of interest across tribal communities, tribal college faculty, traditional science institutions, and community-based citizen science. This project also enhances the research capacity of all partners, and brings together diverse perspectives, which have been shown to lead to greater innovation, creativity, and higher impact research. The project has the potential to provide a tried and tested model for building similar partnerships at other institutions, including content and methods for professional development for mainstream scientists, ways to create more welcoming spaces for Native American students and scientists, promising practices for improving how research in the geosciences carried out, and an increase in the representation of Native American students and scientists in that vital research enterprise.
In December the Science Museum will open Mathematics: The Winton Gallery. The new gallery tells mathematical stories in relation to a broad spectrum of fundamental human concerns. One of the key exhibits is a newly acquired machine for modelling storm surges in the North Sea. Designed by Japanese engineer Shizuo Ishiguro, the object offers a way to explore the far-reaching impact and relevance of mathematical work.
Of all the online information tools that the public relies on to collect information and share opinions about scientific and environmental issues, Twitter presents a unique venue to assess the spontaneous and genuine opinions of networked publics, including those about a focusing event like the Fukushima Daiichi nuclear accident following the 2011 Tohoku earthquake and tsunami. Using computational linguistic algorithms, this study analyzes a census of English-language tweets about nuclear power before, during, and after the Fukushima nuclear accident. Results show that although discourse about
DATE:
TEAM MEMBERS:
Nan LiHeather AkinLeona Yi-Fan SuDominique BrossardMichael XenosDietram Scheufele
This INSPIRE project addresses the issue of high volume hydraulic fracturing, also called fracking, and its effects on ground water resources. Fracking allows drillers to extract natural gas from shale deep within the earth. Methane gas sometimes escapes from shale gas wells and can contaminate water resources or leak into the atmosphere where it contributes to greenhouse gas emissions. Monitoring for these potential leaks is difficult because methane is also released into aquifers naturally, and because monitoring is time- and resource-intensive. Such subsurface leakage may also be relatively rare. This project seeks to improve overall understanding of the impacts of natural gas drilling using both advances in computer science and geoscience, and to teach the public about such impacts. The project will elucidate both the effects of human activities such as shale gas development as well as natural processes which release methane into natural waters. Results of the proposed research will lead to a better understanding of water quality in areas of shale-gas development and will highlight problems and potentially problematic management practices. The research will advance both the fields of geoscience and computer science, will train interdisciplinary graduate students, and involve citizen scientists in collecting data and understanding environmental data analysis.
The project combines new hydro-geochemical strategies and data mining approaches to study the release of methane into streams and ground waters. For example, researchers will explore how to analyze the heterogeneous spatial data that describe distributions of methane concentrations in natural waters. The objectives of this project are to i) transform the ability to measure methane in streams; ii) train citizen scientists to work with project scientists to sample streams in an area of shale-gas development and publish large-volume datasets of methane in natural waters and aquifers; iii) innovate data mining and machine learning methods for environmental data to identify anomalous spots with potential leakage; iv) run field campaigns to measure methane concentrations and isotopic signatures of water samples in these spots; v) foster dialogue among nonscientists, consultants, university scientists, members of the gas industry, government agencies, and nonprofit organizations in and beyond the target region. Toward this end, the team will host workshops aimed to build dialogue among stakeholders and will release data analytic software for environmental measurements to benefit a broader research community.
The Fluid Earth Viewer (FEVer), an interactive and visually appealing web application that will allow users to visualize current and past conditions of our planet's atmosphere and oceans will be built via this award. This free web application, available to anyone with an internet connection, will directly impact approximately 2,000 individuals in-person through three field tests and is expected to reach many more online.
FEVer will be an extension of an existing open-source web application, and the PIs will add polar data sets, extended options in the user interface, and the ability to view historical climate/weather data to the existing "earth" app. It will be a vehicle of modern Earth science communication, making information most often used by the scientific community accessible and engaging to broader communities. In particular, it will provide hands-on visualization of the important climatic role of the polar-regions, their connections to lower latitudes, and the changes they are undergoing. A companion website, FEVer-Ed, will provide background, educational support, and opportunities for additional learning through a gallery of historically interesting atmospheric and oceanic events. FEVer will serve as a gateway to data sets that have otherwise been inaccessible to audiences outside of the research community. While a number of large data sets are included in this proposal (regional and global operational weather models/reanalyses), the platform is scalable to include other data such as ice sheet and glacier dynamics.
This project is partially funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.