Skip to main content

Community Repository Search Results

resource project Exhibitions
History Colorado (HC) conducted an NSF AISL Innovations in Development project known as Ute STEM.
DATE: -
TEAM MEMBERS: Elizabeth Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project Professional Development, Conferences, and Networks
The North Carolina Museum of Natural Sciences will partner with North Carolina State University to improve the evaluation skills of informal science education providers. The project team will create a community of practice for 54 science museums across North Carolina by implementing a series of regional professional development workshops. The workshops will be designed to create a shared sense of purpose for programming and evaluation, build capacity among science museum educators to evaluate their programs, and establish a set of common metrics and methodologies for the evaluation of informal science learning across the state. The project will produce a practitioner's guide that will describe the collaborative process, lessons learned, and ways other informal science organizations can use identified evaluation goals and metrics.
DATE: -
TEAM MEMBERS: Darrell Stover
resource project Public Programs
The Discovery Museums will develop and implement a continuous improvement process to improve the impact of its STEM programming by strengthening staff skills in using evaluation data. The project will begin with a series of training sessions for learning programs staff based on feedback from youth regarding the quality of the museum's program delivery and an assessment of staff competencies in positive youth development. Participating staff will benefit from a deeper understanding of data and the ability to build ongoing evaluation and positive youth development practices into their program presentations in a way that supports Social-Emotional Learning outcomes. The project will potentially result in a process and set of tools to quantify the impact of STEM programming that can be shared with other informal learning organizations.
DATE: -
TEAM MEMBERS: Sarah Elizabeth Tropp-Pacelli
resource project Informal/Formal Connections
Early learning experiences for children have the potential to make a lasting impression on a young person, and ultimately influence their interests, school trajectories, and professional careers. As such, there has been an increasing effort to understand what can make these experiences more or less productive for young people, particularly in science, technology, engineering, and mathematics fields that face ongoing challenges related to workforce development. A better understanding of what happens during and after early engineering activities - and in particular, what contributes to a productive and engaging experience for children between the ages of 3 and 5 - can inform the design of new activities and potentially catalyze greater interest and learning about engineering at a young age. This study seeks to add new knowledge in this area by exploring how and why different elements of engineering activities for young children might be more or less effective for early learners. In addition, the study also examines engagement and interest related to engineering at the family level, acknowledging the essential roles that parents and families play in the overall development of young children. Finally, this study includes a specific focus on low-income and Spanish-speaking families, thereby engaging with communities that historically have less access to early science and engineering learning opportunities and remain persistently underrepresented in these fields. In order to maximize the impact of this research, findings from this study will be shared broadly with parents, educators, and researchers from multiple fields such as engineering education, child development, and informal/out-of-school time education.

This study has the potential to have a transformative impact on engineering education by developing both educational products and conceptual frameworks that advance the field's knowledge of how to effectively engage young learners and their parents/caregivers in meaningful and productive engineering learning experiences. This study seeks to break new ground at the frontiers of early childhood engineering, specifically through a) articulating and refining a new integrated conceptual framework that weaves together theories of learning and development with theoretical constructs from engineering design and b) applying and refining this integrated framework when creating, implementing, assessing, and revising components of family-based engineering activities for early learners, particularly those from low-income and Spanish-speaking families. Unlike many other early childhood engineering programs, this project focuses on the family context, which is the primary driver of learning and interest development at this age. The study therefore provides an opportunity to advance the field by both helping young children build engineering skills and interests before starting kindergarten while also empowering parents to support their children's engineering education at a critical developmental period. Additionally, by enhancing parent-child interactions and supporting a range of early childhood development goals, this project will also contribute to efforts to decrease the persistent kindergarten readiness gap across racial, ethnic, and socioeconomic groups. The research ultimately supports efforts to increase the diversity of individuals who will potentially enter the engineering workforce.
DATE: -
TEAM MEMBERS: Gina Navoa Svarovsky Amy Corbett Maria Perdomo Scott Pattison
resource project Public Programs
This 4-year project addresses fundamental equity issues in informal Science, Technology, Engineering and Mathematics (STEM) learning. Access to, and opportunities within informal STEM learning (ISL) remain limited for youth from historically underrepresented backgrounds in both the United States and the United Kingdom. However, there is evidence that ISL experiences can expand opportunities for youth learning and development in STEM, for instance, increase positive attitudes towards educational aspirations and future careers/pursuits, improve grades and test scores in school settings, and decrease disciplinary action and dropout rates. Through research and development, this project brings together researchers and practitioners to focus on the experiences, practices and tools that will support equitable youth pathways into STEM. Working across conceptual frameworks and ISL settings (e.g. science centers, community groups, zoos) and universities in four urban contexts in two different nations, the partnership will produce a coherent knowledge base that strengthens and expands research plus practice partnerships, builds capacity towards transformative research and development, and develops new models and tools in support of equitable pathways into STEM at a global level. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This Equity Pathways project responds to three challenges at the intersections of ISL research and practice in the United States and the United Kingdom: 1) lack of shared understanding of how youth from historically underrepresented backgrounds perceive and experience ISL opportunities across national contexts, and the practices and tools needed to support empowered movement through ISL; 2) limited shared understanding and evidence of core high-leverage practices that support such youth in progressing within and across ISL, and 3) limited understanding of how ISL might be equitable and transformative for such youth seeking to develop their own pathways into STEM. The major goal of this Partnership is for practitioners and researchers, working with youth through design-based implementation research, survey and critical ethnography, to develop new understandings of how and under what conditions they participate in ISL over time and across settings, and how they may connect these experiences towards pathways into STEM. The project will result in: 1) New understandings of ISL pathways that are equitable and transformative for youth from historically underrepresented backgrounds; 2) A set of high leverage practices and tools that support equitable and transformative informal science learning pathways (and the agency youth need to make their way through them); and 3) Strengthened and increased professional capacity to broaden participation among youth from historically underrepresented backgrounds in STEM through informal science learning. The project will be carried out by research + practice partnerships in 4 cities: London & Bristol, UK and Lansing, MI & Portland, OR, US, involving university researchers (University College London, Michigan State University, Oregon State University/Institute for Learning Innovation) practitioners in science museums (@Bristol Science Centre, Brent Lodge Park Animal Centre, Impressions 5, Oregon Museum of Science & Industry) and community-based centers (STEMettes, Knowle West Media Centre, Boys & Girls Clubs of Lansing, and Girls, Inc. of the Pacific Northwest).
DATE: -
resource project Professional Development, Conferences, and Networks
Potential STEM talent is lost each day for some of the most underserved and underrepresented populations in our nation's incarcerated men, women, and youth. With years devoid of quality STEM education and opportunities while in prison, incarcerated individuals are often significantly underprepared in STEM and for the STEM workforce. This educational debt exacerbates the pattern of marginalization for these vulnerable populations. Their STEM literacy, employability and potential for earning sustainable wages upon release are stifled. This deficit in opportunity is especially stark for underrepresented groups in the United States. Roughly 61% of the prison population is non-white, which far exceeds the national average of 35%. The U.S. also has the highest per capita incarceration rates in the world, incarcerating 698 men, women, and youth for every 100,000 people. Equally unsettling, for the first time in American history the population growth rate for incarcerated women has outpaced men by almost 2 to 1 for the past 25 years. While there are many contributing factors to the high rate of incarceration in the U.S., high quality prison STEM education programs have been shown to help counter socio-economic and education debts through greater STEM knowledge attainment, successful societal integration, and increased wage and advancement potential, which increase the likelihood that formerly incarcerated individuals and their children can live productive lives. The NSF INCLUDES STEM Opportunities in Prison Settings (STEM-OPS) Alliance endeavors to build a national network aimed at providing and supporting viable pathways to STEM for the incarcerated and formerly incarcerated. Using a collective impact approach, the Alliance will work collaboratively with key stakeholders and the target population to advance extant and untapped knowledge on high quality prison STEM education and opportunities. This work builds on efforts supported by the National Science Foundation, including exploratory work piloted by two NSF INCLUDES Design and Development Launch Pilots. If successful, this Alliance has the potential to significantly transform the face of the STEM workforce and the narrative regarding the incarcerated and formerly incarcerated and their potential to succeed in STEM.

The STEM-OPS Alliance is comprised of partner organizations committed to ensuring that STEM preparation during and post incarceration is commonplace and successful. During its first year, the Alliance will focus on establishing its national network through a shared vision and goals and a collective impact approach. It will conduct systems ecology mapping to inform the supports and resources needed for the target population to succeed in STEM. Focus groups and interviews will be conducted with incarcerated middle/high school aged youth to better understand their experiences in K-12 schools and with STEM education prior to and during incarceration. The results of the mapping and youth study will be used to inform the future work of the Alliance. Affordances the network endeavors to achieve include: (a) creating accessible STEM opportunities for the target populations through STEM courses, in-prison laboratories, research experiences for undergraduates (REUs), internships, and mentoring, (b) a culturally responsive platform to connect formerly incarcerated job seekers with STEM employment opportunities, (c) an evidence-based toolkit for effective STEM in-prison program design and implementation, (d) an annual convening of key stakeholders and representatives from the target populations to share learnings, disseminate findings and resources, and support the growth and development of the Alliance, and (d) leveraging connections to the greater NSF INCLUDES National Network. A formative and summative evaluation will be conducted by an external evaluator. Through its network, the STEM OPS Alliance is well poised to directly impact 700-880 incarcerated and formerly incarcerated men and women and reach a significant number of organizations working to improve STEM opportunities and outcomes within prison contexts.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. Significant co-funding has also been provided by the NSF Innovative Technology Experiences for Students and Teachers (ITEST) program and the NSF Advancing Informal STEM Learning Program (AISL).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Eden Badertscher Stanley Andrisse Jannette Carey Rich Milner
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
Underrepresented minorities (URMs) represent 33% of the US college age population and this will continue to increase (1). In contrast, only 26% of college students are URMs. In the area of Science Technology, Engineering and Mathematics (STEM), only 15% of college students completing a STEM major are URMs (2). While there have been gains in the percent of Hispanic and Black/African Americans pursuing college degrees, the number of Native American college students remains alarmingly low. In 2013, Native Americans represented only 1% of entering college students and less than 50% finished their degree. Moreover, 1% of students pursuing advanced degrees in STEM-related fields are Native American/Alaska Native. With regards to high school graduation rates, the percent of Native American/Alaska Native students completing high school has decreased with only 51% of students completing high school in 2010 compared to 62 % and 68% for Black and Latino students respectively. While identifying ways to retain students from all underrepresented groups is important, developing programs targeting Native American students is crucial. In collaboration with the Hopi community, a three-week summer course for Native American high school students at Harvard was initiated in 2001. Within three years, the program expanded to include three additional Native American communities. 225 students participated in the program over a 10-year period; and 98% of those responding to the evaluation completed high school or obtained a GED and 98% entered two or four year colleges including 6 students who entered Harvard. This program was reinitiated in 2015 and we plan to build on the existing structure and content of this successful program. Specifically, in collaboration with two Native American communities, the goal of the program is 1) to increase participants’ knowledge of STEM disciplines and their relevance to issues in participants’ communities via a three week case-based summer course for Native American high school students; 2) to help enhance secondary school STEM education in Native American communities by providing opportunities for curriculum development and classroom enhancement for secondary school teachers in the participating Native American communities; and 3) to familiarize students with the college experience and application process and enhance their readiness for college through workshops, college courses and internships. Through these activities we hope to 1) increase the number of Native American students completing high school; 2) increase the number of Native American students applying and being accepted to college; 3) increase the number of Native American students pursuing STEM degrees and careers; 4) increase the perception among Native American students that attending and Ivy plus institution is attainable; 5) increase the feeling of empowerment that they can help their community by pursuing advanced degrees in STEM.

PUBLIC HEALTH RELEVANCE:
This proposal supports a summer program for high school students and teachers from Native American communities. The program goals are to encourage students to complete high school and prepare them for college and to also consider degrees in science, technology, engineering, and math.
DATE: -
TEAM MEMBERS: Sheila Thomas
resource project Public Programs
The goals of this proposal are: 1) to provide opportunities for underrepresented students to consider careers in basic or clinical research by exciting them through an educational Citizen Science research project; 2) to provide teachers with professional development in science content and teaching skills using research projects as the infrastructure; and 3) to improve the environments and behaviors in early childcare and education settings related to healthy lifestyles across the state through HSTA students Citizen Science projects. The project will complement or enhance the training of a workforce to meet the nation’s biomedical, behavioral and clinical research needs. It will encourage interactive partnerships between biomedical and clinical researchers,in-service teachers and early childcare and education facilities to prevent obesity.

Specific Aim I is the Biomedical Summer Institute for Teachers led by university faculty. This component is a one week university based component. The focus is to enhance teacher knowledge of biomedical characteristics and problems associated with childhood obesity, simple statistics, ethics and HIPAA compliance, and the principles of Citizen Science using Community Based Participatory Research (CBPR). The teachers, together with the university faculty and staff, will develop the curriculum and activities for Specific Aim II.

Specific Aim II is the Biomedical Summer Institute for Students, led by HSTA teachers guided by university faculty. This experience will expose 11th grade HSTA students to the biomedical characteristics and problems associated with obesity with a focus on early childhood. Students will be trained on Key 2 a Healthy Start, which aims to improve nutrition and physical activity best practices, policies and environments in West Virginia’s early child care and education programs. The students will develop a meaningful project related to childhood obesity and an aspect of its prevention so that the summer institute bridges seamlessly into Specific Aim III.

Specific Aim III is the Community Based After School Club Experiences. The students and teachers from the summer experience will lead additional interested 9th–12th grade students in their clubs to examine their communities and to engage community members in conducting public health intervention research in topics surrounding childhood obesity prevention through Citizen Science. Students and teachers will work collaboratively with the Key 2 a Healthy Start team on community projects that will be focused on providing on-going technical assistance that will ultimately move the early childcare settings towards achieving best practices related to nutrition and physical activity in young children.
DATE: -
TEAM MEMBERS: Ann Chester
resource project Public Programs
This three-year research and implementation project empowers middle school LatinX youth to employ their own assets and funds of knowledge to solve community problems through engineering. Only 7% of adults in the STEM job cluster are of Hispanic/Latino origin. There is a continuing need for filling engineering jobs in our current and future economy. This project will significantly broaden participation of LatinX youth in engineering activities at a critical point as they make career decisions. Design Squad Global LatinX expands on a tested model previously funded by NSF and shown to be successful. It will enable LatinX youth to view themselves as designers and engineers and to build from their strengths to expand their skills and participation in science and engineering. The project goals are to: 1) develop an innovative inclusive approach to informal engineering education for LatinX students that can broaden their engineering participation and that of other underrepresented groups, (2) to galvanize collaborations across diverse local, national, and international stakeholders to create a STEM learning ecosystem and (3) to advance knowledge about a STEM pedagogy that bridges personal-cultural identity and experience with engineering knowledge and skills. Project deliverables include a conceptual framework for a strength-based approach to engineering education for LatinX youth, a program model that is asset based, a collection of educational resources including a club guide for how to scaffold culturally responsive engineering challenge activities, an online training course for club leaders, and a mentoring strategy for university engineering students working with middle school youth. Project partners include the global education organization, iEARN, the Society of Women Engineers, and various University engineering programs.

The research study will employ an experimental study design to evaluate the impact on youth participating in the Design Squad LatinX programs. The key research questions are (1) Does participation increase students' positive perceptions of themselves and understanding of engineering and global perspectives? (2) To what extent do changes in understanding engineering vary by community (site) and by student characteristics (age, gender, ethnicity)? (3) Do educators and club leaders increase their positive perceptions of youths' funds of knowledge and their own understanding of engineering? and (4) Do university mentors increase their ability to lead informal engineering/STEM education with middle school youth? A sample from 72 local Design Squad LatinX clubs with an enrollment of 10-15 students will be drawn with half randomly assigned to the participant condition and half to the control condition. Methods used include pre and post surveys, implementation logs for checks on program implementation, site visits to carry out observations, focus groups with students and interviews with adult leaders. Data will be analyzed by estimating hierarchical linear models with observations. In addition, in-situ ethnographically-oriented observations as well as interviews at two sites will be used to develop qualitative case studies.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Mary Haggerty
resource project Informal/Formal Connections
There are several critical reasons to understand and support interest development in early childhood: (a) as a primary motivator of engagement and learning; (b) interest development in preschool predicts important learning outcomes and behaviors in early elementary school; and (c) early childhood interests motivate ongoing interest development. Thus, there is growing recognition that interest is not just important but fundamental to education and learning. Head Start on Engineering (HSE) is a multi-component, bilingual (Spanish/English), family-focused program designed to (1) foster long-term interest in the engineering design process for families with preschool children from low-income backgrounds and (2) support family development and kindergarten readiness goals. The HSE program, co-developed with the Head Start community, provides families with developmentally appropriate, story-based engineering design challenges for the home and then connects these to a system of strategically aligned Informal STEM Education (ISE) experiences and resources. This current project, HSE Systems, builds on a previous HSE Pathways project which (a) established that participating families develop persistent engineering-related interests; (b) highlighted the value that the Head Start community has for the program and partnership; and (c) generated a novel, systems perspective on early childhood interest development. The aim of HSE Systems is to develop and test a model of early childhood STEM engagement and advance knowledge of how the family as a system develops interest in STEM from preschool into kindergarten.

Through the Design Based Implementation Research (DBIR) process, the team will iteratively refine and improve the HSE program and theory of change using ongoing feedback and data from staff, families, and partners. It is also designed to explore program impacts on family interest development over a longer period, as children enter kindergarten. The DBIR work will focus primarily on the program model questions, while the case study research will focus on the family interest questions, with both strands informing each other. The initial work is organized around a series of feedback and design-testing cycles to gather input from families and other stakeholders, update the program components and activities in collaboration with families and staff, and prepare for full implementation. During the next phase, the team will implement the full program model with six Head Start classrooms and track family experiences and interest development into kindergarten. During final implementation phase, the team will finish data collection, conduct retrospective analysis with all the data, and update the program model and theory of change.

This project will directly address the AISL program goals by broadening access to early childhood informal STEM education for low-income communities, with a focus on Spanish-speaking families, and building long-term skills and learning dispositions to support STEM learning inside and outside of school. Beyond the topic of engineering, HSE supports Head Start school readiness and child and family development goals, which are the foundation of lifelong success.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -