Skip to main content

Community Repository Search Results

resource project Media and Technology
For over two decades NSF has been investing in the development and evaluation of giant screen films for viewing by audiences in science centers and museums. These have been highly successful in terms of audiences reached and project evaluations that indicate their impact on learning. Less well understood is how the unique attributes of giant screen films (e.g., "immersion" and "presence") affect learners in ways that differ from other film formats. This integrated research and media project will contribute to that knowledge base. Project deliverables will include a giant screen film that tells the story of the discovery of biological mimicry (the critical proof for natural selection and in turn, evolution) through the life story of Henry Bates and his travels through the Amazon rainforest more than 150 years ago; 2D dome, and 2D flat format versions; live interactive science demonstrations and educational resources; and workshops for ISE professionals. The film and the related outreach via science centers, social media, and the web are expected to reach large public audiences; workshops and web resources will reach ISE professionals nationally. A strategy for reaching underrepresented audiences through science museums and partnerships with educational societies is a part of the broadening participation effort. Building on results of an NSF-funded workshop in which researchers, evaluators, and filmmakers began to develop a research agenda to provide evidence about giant screen attributes and their impacts on learning, the research component of this project will focus on the differences in learner knowledge among the various film formats, their unique attributes, and whether format plays a role in science interest and science identity. A baseline study will be conducted to begin gathering evidence on how each of these formats affects learning. Data on audience knowledge gains, interest, and science identity will be collected using a novel tablet-based game-like assessment pre-film viewing, immediately post viewing, and in a later follow-up. These baseline data will inform follow-on research that, over time, can better explain the unique impacts on learning of the giant screen format. Project partners include the Pacific Science Center, SK Films, Howard Hughes Medical Institute, Rutgers University, and Arizona State University.
DATE: -
TEAM MEMBERS: Diane Carlson Mina Johnson-Glenberg Mary Nucci
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Nationally, the US has a shortage of computer scientists; a big part of this problem is that girls are discouraged from learning computer science at a very young age. This project tries to address this problem by creating a videogame specifically oriented towards getting middle school girls interested in learning computer science concepts outside traditional programming classes. Based on evidence that stories provide a compelling way to present complicated technical subjects and that girls in particular respond to technology careers as a way to help others, the project is building a videogame called "Gram's House" in which social workers intend to move a fictional grandmother to a retirement home unless the player can outfit her home with sufficient technology for her to remain independent. Solving puzzles in the game requires learning core computer science concepts. Research studies will be conducted to determine whether the videogame is effective at getting girls interested in computer science, at teaching computer science concepts, and whether using stories makes videogames more effective for learning. This project based on an earlier successful prototype uses an iterative research-based design process including paper prototyping, playtesting, and focus groups (N=20) to create age appropriate activities, based on the CS Unplugged series, that support learning concepts from the Data, Internet, Algorithms, and Abstraction sections of the high-school level CS Principles curriculum. A quantitative, quasi-experimental design will be used to determine the overall effectiveness of teaching CS concepts under three types of game conditions: (a) games alone, (b) games with fictional settings, and (c) games with stories. A novel assessment instrument will be developed to assess content learning and qualitative observation using a standard observation protocol will be used to gauge interest and engagement. 70-80 middle school girls will be recruited for afterschool participation in the study in two states. As part of the dissemination efforts, a facilitator's guide, rule book, and materials such as maps and storyboards will be created and shared with the game. In addition, a workshop for computer science and other teachers who are interested in using games to teach CS concepts will be conducted.
DATE: -
TEAM MEMBERS: Elisabeth Gee Carolee Stewart-Gardiner
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create objects. Increasingly, maker spaces and maker technologies are being designed to provide extended learning opportunities for school-aged young people. Unfortunately, few youth from under-represented populations have had the opportunity to participate in these maker spaces, and many communities do not have the resources to establish facilities dedicated to making activities. This project, a collaboration of faculty at California State University, San Marcos and San Diego County Office of Education, the Vista Unified School District, and the San Diego Fab Lab, is a feasibility study that will work to address these needs by implementing and evaluating a pilot Mobile Making program in an underserved youth population. It will bring Making to four after-school programs in underserved communities in San Diego by using a van to take both equipment and undergraduate student mentors to program sites. At these sites, between 50% and 90% of the students are Hispanic or Latino and between 40% and 90% are eligible for free or reduced price lunch. The project employs a research-based approach to the design and implementation of the Mobile Making program, coupled with an evidenced-based plan for developing a model for future dissemination. Project objectives are: increasing the participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life; identifying and overcoming challenges associated with a Mobile Making program; developing a model for implementing and assessing Mobile Making in underserved communities; and disseminating materials and guides for practitioners. Development will be guided by five research-based principles for design of out-of-school time programs in underserved communities: access to resources; ethnically diverse near-peer leaders; authentic activities; legitimacy within the community; and ongoing input from participants. To inform program development and implementation, including continuous monitoring and adjustment throughout the two-year initiative, the evaluation component will use a mixed methods approach to study outcomes with respect to the students, their parents and the undergraduate mentors. Future work will apply the lessons learned in the project to guide implementations and study the model's applicability in other informal education settings. The dissemination plan will include publication of project findings, activities, practitioner's guides, and the model for implementing making programs in underserved communities.
DATE: -
TEAM MEMBERS: Edward Price Charles de Leone
resource project Public Programs
The mission of the New Mexico Informal Science Education Network (NM ISE Net) is to provide opportunities and resources for informal educators to work together to impact science teaching, science learning, and science awareness throughout the state of New Mexico. The NM Museum of Natural History and Science leads NM ISE Net with support from NM EPSCoR.
DATE: -
TEAM MEMBERS: New Mexico Museum of Natural History Selena Connealy Charlie Walter
resource project Media and Technology
The National Science Teachers Association (NSTA), the Association of Science-Technology Centers (ASTC) and their research/evaluation partner, David Heil and Associates (DHA), will conduct front-end research to develop, pilot, and evaluate (formatively and summatively) a peer-reviewed journal and associated multi-media resources designed to catalyze innovative advances and learning across formal and informal science, technology, engineering, and mathematics (STEM) education communities. The goal is to identify content that is useful and appeals to the intersection of three target audiences: informal educators, formal educators and researchers conducting research at the intersection of in-school and out-of-school learning. This informal science education (ISE) "journal" would be a multi-media resource, available in both print and electronic forms, that could include videos or digital interactives and provide the potential for audience/reader feedback mechanisms, including input via social media. The publication proposed in this project has the potential to satisfy in part a key need identified in a Wellcome Trust study, Analysing the UK Science Education Community: The contribution of informal providers. The study report identifies the need to build an international depository of what has been and is being learned in ISE experiences at the boundary of in-school and out-of-school STEM learning - including syntheses of research, program evaluations, policy reports and illustrative cases studies. The proposed journal will also provide a vehicle to encourage and develop incentives for practitioners to publish results of their work. The project will use surveys, phone interviews and focus groups to conduct: 1) a landscape assessment, identifying what resources are already available to target audiences, how they are used, and what is missing; 2) front-end research with target audiences prior to publication of pilot issues, assessing interests, needs, and expectations and testing early topics, delivery formats, and discussion vehicles; and (3) formative and summative evaluation, assessing how well the (two-issue) pilot and associated social media vehicles foster synergy and satisfy the needs of the identified target audiences.
DATE: -
TEAM MEMBERS: National Science Teachers Association Kelly Riedinger David Evans Margaret Glass
resource project Public Programs
Girlstart will implement a comprehensive suite of informal STEM education programs that directly reach 2,500 4th-8th grade girls and their parents. This project will increase interest in and understanding of STEM disciplines by inspiring and engaging girls and their parents; it will establish linkages between formal and informal STEM education; and it will stimulate parents to support girls’ STEM learning endeavors by becoming informed proponents for high-quality STEM education. Over the course of 48 months—from fall 2012 to fall 2016—Girlstart seeks to develop new, robust, NASA-rich curriculum for its nationally-replicated Girlstart Summer Camp program, as well as year-long curriculum for its recognized Girlstart After School program. Curricula will be prepared for a range of ages and abilities and include links to electives, higher education majors, and careers. Girlstart will also conduct public and community STEM education programs throughout the region in NASA content areas. In addition, Girlstart will develop relevant, hands-on exhibits at the Girlstart STEM Center in Austin, Texas.
Through this project, Girlstart will:  (1) Increase facility and mastery in STEM skills. (2) Increase participants’ interest in pursuing STEM subjects and careers. (3) Increase participants’ understanding and mastery of the scientific method and the engineering design process as systems for problem solving and scientific discovery. (4) Increase participants’ understanding that there are multiple applications of STEM in everyday life. (5) Increase participants’ understanding of higher education as key to expanding career options. (6) Increase participants’ confidence and interest in conducting STEM activities. (7) Increase participants’ awareness of STEM careers.
DATE: -
TEAM MEMBERS: Tamara Hudgins
resource project Public Programs
The Astronomical Society of the Pacific (ASP) and its collaborators are conducting a set of research and development activities focusing on early childhood astronomy in the first field-wide effort to increase the capacity of informal science education (ISE) institutions to effectively engage their youngest visitors (ages 3 - 5) in astronomy. Leading the project is an Action Research Group comprised of the ASP; experts in cognitive development, early childhood, and astronomy learning progressions from UC Santa Cruz, Cal Poly San Luis Obispo, and Penn State; and the Lawrence Hall of Science at UC Berkeley, Children's Discovery Museum of San Jose, and San Luis Obispo Children's Museum as sites for research, field testing, and implementation. The project will identify critical areas of focus for early childhood astronomy and will test the hypothesis that early astronomy learning is not only possible but may contribute to a more sophisticated understanding of the domain. A key question is: How can the ISE field scaffold children's early curiosity and ideas about astronomy to position them for greater understanding and interest in the topic? The results of the research and the materials that are created for educators will receive broad distribution nationally.
DATE: -
TEAM MEMBERS: Astronomical Society of the Pacific Suzanne Gurton Julia Plummer Maureen Callanan Jennifer Jipson
resource project Media and Technology
Across the globe, citizen science projects are becoming increasingly poised to address social and environmental challenges and answer broad scientific questions. Although rapidly increasing in number, these projects need easy-to-use software tools for data management, analysis, and visualization to be successful. This project transforms how citizen science projects unfold locally, regionally, and globally by creating software that supports the full spectrum of project activities. It empowers projects to ask and answer their own local questions while contributing data critical to larger-scale issues. These tools will allow projects to announce training events; track volunteers; create datasheets; enter, review, analyze, and visualize data; publish reports; discover resources; integrate data; and ensure that data are contributed to repositories (e.g., DataONE, NEON, GBIF, HydroShare, and EOL). Tools will be made available to citizen science projects and will be delivered as reusable software elements for use in existing websites; as website features on CitSci.org; and as Application Programming Interface (API) services and mobile applications. The tools will expand the national reach, local appeal, computational abilities, visualization techniques, statistical analysis capabilities, and interoperability of the nations' cyber-infrastructure. Using participatory design and agile methods, the project will: (1) develop reusable software elements that citizen science organizations can embed into their own websites, (2) harden and expand the functionality and capabilities of CitSci.org through new website features, and (3) extend the APIs of CitSci.org and develop associated mobile applications to increase system and tool interoperability. The target user communities will include citizen science project coordinators. It will deliver customizable tools and services related to all project activities and engage projects across a wide array of disciplines. Project coordinators will be able to customize all tools developed to suit their specific project needs. Adoption and use of the tools developed will create a cyber-ready workforce capable of collecting, contributing, and applying high quality ecological, geophysical, social, and human health related observations to solve real-world problems. These broader impacts will help the citizen science community better understand effective models of public engagement to ensure more impactful application of citizen science to societal challenges.
DATE: -
TEAM MEMBERS: Gregory Newman Stacy Lynn Melinda Laituri
resource project Public Programs
The Exploring Engagement and Science Identity Through Participation is a research project that examines the outcomes of various citizen science models for Public Participation in Scientific Research (PPSR). The investigation specifically targets citizen science projects that focus on relationships between science learning and science identity. A mixed-method, meta-analysis approach will be employed. The two primary goals of the study are to better understand science learning and science identify within PPSR contexts and to develop a valid Participant Engagement Metric (PEM) for use within PPSR contexts. Data will be collected and analyzed from several PPSR projects and over 4,000 PPSR participants. The project will address several research questions: (1) What are the dimensions of PPSR engagement and how can we measure them across different project models? The research for this question will include approximately 50 interviews of participants in six primary projects representing a range of PPSR approaches to develop and validate a Participant Engagement Metric (PEM) that will be constructed from the frequency, duration and intensity of involvement in key activities. The project will use a constant comparative method of data analysis (processing of data as they are gathered in order to compare them with emerging categories. The development of the PEM will be one concrete outcome of the proposed research. (2) Within and among projects, what is the relationship between participant engagement and individual learning outcomes? The project will use validated measures of learning outcomes derived from Learning Science in Informal Environments (NRC, 2009) and developed for the DEVISE project described below. The six measures include: Behavior & Stewardship, Skills of Science Inquiry, Knowledge of the Nature of Science, Interest in Science & the Environment, Efficacy, and Motivation. The proposed research will look at how engagement affects learning outcomes, as assessed by these six measures (science interest, efficacy, etc.). The project will conduct participant surveys in the six participating citizen science projects in addition to several other PPSR projects to test the relationship of the PEM and other measures of activity involvement to the learning outcomes measured by the survey instruments developed and validated through a previous project. The data analysis will begin with univariate summary statistics that will provide an overview of the basic dataset. Inferential statistics including multiple regression analysis will be used to test the relationships among the independent variables (type of PPSR project, demographics), PEM as a mediator variable, and the dependent variables. (3) How does degree and quality of participation in scientific research develop and/or reinforce individual science identity? The project will conduct a 3-year longitudinal study using surveys, a series of in-depth interviews, and on-site observations of 36 participants from the six primary projects to understand the development of individual science identity within PPSR environments over time. Quantitative and qualitative data and findings will be "triangulated" to determine if convergent, inconsistent or complementary results can be identified. The project proposes a strong dissemination plan, using these approaches, to present research in journals, disseminate research briefs, host online forums, and launching various listserves and online forums at the citizenscience.org website.
DATE: -
resource project Public Programs
Indianapolis / City as Living Laboratory (I/CaLL) is a city-wide civic collaboration engaging in cross-sector research that builds on prior research in informal science learning in public settings. It extends research in place-based and service learning traditions, and uses the city itself as an informal science learning (ISL) environment for Science and Engineering for Environmental Sustainability learning outcomes. This project is creating place-based science learning experiences as part of public spaces in Indianapolis and establishes the next generation of urban science museums that increase opportunities for learning. The project will develop a self-sustaining program for art/science collaborations as they inaugurate city-sanctioned changeable installations at I/CaLL sites. Data from the project will be used to inform ISL professionals at museums throughout the community and around the country. Thousands of volunteers and their families will help create I/CaLL spaces, engage with communities, and serve as research participants connecting with science learning through site development. The unprecedented scale of this project provides a full measure of informal science service learning at a city scale, offering data that can change how science learning is measured, how people from all walks of life develop science literacy as part of their social public experience, and embodying the concept of the city as a living science learning lab. Broader impacts include the development of the city as an informal science learning environment that will become a new standard for thinking about what cities as cultural units can become as we build a resilient Science and Engineering culture for Environmental Sustainability.
DATE: -
TEAM MEMBERS: timothy carter Gabriel Filippelli Mary Miss John Fraser
resource project Media and Technology
Living Liquid is a full-scale development project that will develop and research a new genre of science exhibit that engage visitors in inquiry with large scientific datasets through interactive visualizations. Building on findings from a prior pathways project, Living Liquid will develop three interactive visualizations on a multi-touch Viz Table with a tangible user interface. Each visualization will support visitors in the exploration of a dataset provided by the project’s science partners: 1) Plankton Patterns will show how the ocean is defined by regions of microscopic life using data from the MIT Darwin Project; 2) Ocean Tracks will reveal the “highways” large marine creatures travel with data from the TOPP project at Stanford University; and 3) Genetic Rhythms will follow the activity of marine creatures’ genes in response to environmental conditions based on data from the Center for Microbial Oceanography Research and Education (C-MORE). Through an iterative process of collaborative research and development among museum professionals, educational researchers, computer scientists, marine biologists, data artists and interaction designers, this project seeks to: (1) Advance public understanding of ocean ecosystems and large data inquiry skills through the development of a Viz Table. (2) Advance STEM professionals’ knowledge of how to engage the public in inquiry with visualizations through an educational research study. (3) Increase the capacity of STEM professionals (both ISE developers and research scientists) to develop visualizations through a collaborative development process that includes graduate student training and residencies.
DATE: -
TEAM MEMBERS: Jennifer Frazier Joyce Ma Kwan-Liu Ma
resource project Media and Technology
Brigham Young University and the University of Maryland, in partnership with the Smithsonian Institution, the Computer History Museum, and NASA, plus leading game designers, educators, scientists, and researchers, will conduct research on the design and development of two large-scale Alternate Reality Games (ARGs) based on deep-time science in astrobiology, astrophysics, and interplanetary space travel. The project will iteratively design and test two distinct types of ARGs (closed- and open-ended) to study the effects of these ARGs on STEM learning. The ARGs will be based upon the Next Generation Science Standards (NGSS), affording learners with intensive, self-driven, and scaffolded scientific learning and will be aimed at attracting girls and other groups historically underrepresented in science and technology. Each ARG will be designed by NASA scientists, educators and education researchers, and game-based learning experts and will be highly interactive: engaging learners in collaborative investigations in real and virtual worlds to collect scientific data, conduct data analysis, and contribute scientific evidence that will help solve scientific questions within a science-based narrative derived from real world problems that will develop learners' computational thinking skills in a collaborative, participatory virtual learning environment. Combining data from web and social media analytics, player interviews, surveys, and user-generated content, researchers, and evaluation experts at UXR who will provide an outcomes-based evaluation, including front-end, formative, remedial, and summative evaluations, will establish the properties of ARGs that most effectively advance informal STEM learning outcomes. By comparing open-ended and closed-ended ARGs, the PIs will be able to assess the relative strengths and weaknesses of two distinct approaches to Alternate Reality Game design. The project team will test the hypothesis that open-ended, user-generated content will support inquiry-based learning, peer-to-peer learning, and life-wide and life-deep learning, while close-ended, narrative-rich ARGs will support specific transfer of STEM knowledge, collaboration, and problem solving. To help ensure that the games appeal to their target audiences, the project team will adopt co-design methods, enlisting the creative input of participating teens at each stage of the design process. Supplementary materials and lesson plans developed in close consultation with teachers, librarians, teens, and external stakeholders will enable the ARGs to be widely and effectively used as a model in museums, classrooms, libraries, and after-school programs. The proposed ARGs represent a unique environment to test learning principles that enable players to bridge their learning through transmedia across multiple contexts and test the effects of collaboration with massive numbers of concurrent players. As a result, the project should yield insights on how learning principles can be adopted and re-appropriated for emerging learning environments, including those that that might be crowd-sourced. The research is well grounded in the literature and the PIs do an excellent job of mapping ARG design principles to the pertinent learning science research, providing a clear sense of the particular affordances of the genre that should lead to new understandings. The approach has profound implications for the way we might teach the next generation of students. The ability to mix problem solving and learning in virtual spaces with experiences and data derived from the physical world could dramatically change how we understand the role of technology in education.
DATE: -
TEAM MEMBERS: Derek Hansen Steven Shumway June Ahn Elizabeth Bonsignore Kari Kraus