Skip to main content

Community Repository Search Results

resource project Exhibitions
History Colorado (HC) conducted an NSF AISL Innovations in Development project known as Ute STEM.
DATE: -
TEAM MEMBERS: Elizabeth Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project
iPlan: A Flexible Platform for Exploring Complex Land-Use Issues in Local Contexts
DATE: -
TEAM MEMBERS:
resource project Public Programs
IMPACT NC is a collaboration between the North Carolina science centers and museums and NC State University (NCSU) to build and foster a Community of Practice (CoP) for collective evaluation among the 54 partner organizations across the state of North Carolina. Funded by IMLS Museum Leadership Grant (MG-70-19-0019-19).

The goals of IMPACT NC are:


Identification of a set of shared goals for informal science education across the state.
Development of metrics to assess these goals.
Enhanced capacity of the Community of Practice of science museums to conduct evaluation centered on these collective evaluation goals and metrics.
Improved cohesion among science museums and other partners in NC (e.g. university collaborators, non-profit organizations) as they collectively work toward shared goals.
Development of a system for reporting program outcomes using shared metrics that is integrated into annual reporting or grant proposal processes across NC, thereby informing decision making.
DATE: -
TEAM MEMBERS: K.C. Busch
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
Underrepresented minorities (URMs) represent 33% of the US college age population and this will continue to increase (1). In contrast, only 26% of college students are URMs. In the area of Science Technology, Engineering and Mathematics (STEM), only 15% of college students completing a STEM major are URMs (2). While there have been gains in the percent of Hispanic and Black/African Americans pursuing college degrees, the number of Native American college students remains alarmingly low. In 2013, Native Americans represented only 1% of entering college students and less than 50% finished their degree. Moreover, 1% of students pursuing advanced degrees in STEM-related fields are Native American/Alaska Native. With regards to high school graduation rates, the percent of Native American/Alaska Native students completing high school has decreased with only 51% of students completing high school in 2010 compared to 62 % and 68% for Black and Latino students respectively. While identifying ways to retain students from all underrepresented groups is important, developing programs targeting Native American students is crucial. In collaboration with the Hopi community, a three-week summer course for Native American high school students at Harvard was initiated in 2001. Within three years, the program expanded to include three additional Native American communities. 225 students participated in the program over a 10-year period; and 98% of those responding to the evaluation completed high school or obtained a GED and 98% entered two or four year colleges including 6 students who entered Harvard. This program was reinitiated in 2015 and we plan to build on the existing structure and content of this successful program. Specifically, in collaboration with two Native American communities, the goal of the program is 1) to increase participants’ knowledge of STEM disciplines and their relevance to issues in participants’ communities via a three week case-based summer course for Native American high school students; 2) to help enhance secondary school STEM education in Native American communities by providing opportunities for curriculum development and classroom enhancement for secondary school teachers in the participating Native American communities; and 3) to familiarize students with the college experience and application process and enhance their readiness for college through workshops, college courses and internships. Through these activities we hope to 1) increase the number of Native American students completing high school; 2) increase the number of Native American students applying and being accepted to college; 3) increase the number of Native American students pursuing STEM degrees and careers; 4) increase the perception among Native American students that attending and Ivy plus institution is attainable; 5) increase the feeling of empowerment that they can help their community by pursuing advanced degrees in STEM.

PUBLIC HEALTH RELEVANCE:
This proposal supports a summer program for high school students and teachers from Native American communities. The program goals are to encourage students to complete high school and prepare them for college and to also consider degrees in science, technology, engineering, and math.
DATE: -
TEAM MEMBERS: Sheila Thomas
resource project Public Programs
The goals of this proposal are: 1) to provide opportunities for underrepresented students to consider careers in basic or clinical research by exciting them through an educational Citizen Science research project; 2) to provide teachers with professional development in science content and teaching skills using research projects as the infrastructure; and 3) to improve the environments and behaviors in early childcare and education settings related to healthy lifestyles across the state through HSTA students Citizen Science projects. The project will complement or enhance the training of a workforce to meet the nation’s biomedical, behavioral and clinical research needs. It will encourage interactive partnerships between biomedical and clinical researchers,in-service teachers and early childcare and education facilities to prevent obesity.

Specific Aim I is the Biomedical Summer Institute for Teachers led by university faculty. This component is a one week university based component. The focus is to enhance teacher knowledge of biomedical characteristics and problems associated with childhood obesity, simple statistics, ethics and HIPAA compliance, and the principles of Citizen Science using Community Based Participatory Research (CBPR). The teachers, together with the university faculty and staff, will develop the curriculum and activities for Specific Aim II.

Specific Aim II is the Biomedical Summer Institute for Students, led by HSTA teachers guided by university faculty. This experience will expose 11th grade HSTA students to the biomedical characteristics and problems associated with obesity with a focus on early childhood. Students will be trained on Key 2 a Healthy Start, which aims to improve nutrition and physical activity best practices, policies and environments in West Virginia’s early child care and education programs. The students will develop a meaningful project related to childhood obesity and an aspect of its prevention so that the summer institute bridges seamlessly into Specific Aim III.

Specific Aim III is the Community Based After School Club Experiences. The students and teachers from the summer experience will lead additional interested 9th–12th grade students in their clubs to examine their communities and to engage community members in conducting public health intervention research in topics surrounding childhood obesity prevention through Citizen Science. Students and teachers will work collaboratively with the Key 2 a Healthy Start team on community projects that will be focused on providing on-going technical assistance that will ultimately move the early childcare settings towards achieving best practices related to nutrition and physical activity in young children.
DATE: -
TEAM MEMBERS: Ann Chester
resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie
resource project Media and Technology
In 2018, the Croucher Foundation conducted its third annual mapping exercise for the out-of-school STEM learning ecosystem in Hong Kong.

The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with over 3,000 discrete activities covering a very wide range of science disciplines. This third report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out-of-school STEM activities in Hong Kong.

STEM educators are eager to foster long term collaboration with each other, and with schools. At the same time, good working practice by schools, teachers, STEM educators and institutions that involves and engages local communities was discovered, showing the diversified modes of connection which could enhance the sustainability of STEM ecosystem.

We trust that this three-year study with its associated digital maps, provides a useful resource for schools, teachers, students, parents, STEM educators and education policy makers in Hong Kong.
DATE: -
TEAM MEMBERS: Siu Po Lee David Foster
resource project Public Programs
This three-year research and implementation project empowers middle school LatinX youth to employ their own assets and funds of knowledge to solve community problems through engineering. Only 7% of adults in the STEM job cluster are of Hispanic/Latino origin. There is a continuing need for filling engineering jobs in our current and future economy. This project will significantly broaden participation of LatinX youth in engineering activities at a critical point as they make career decisions. Design Squad Global LatinX expands on a tested model previously funded by NSF and shown to be successful. It will enable LatinX youth to view themselves as designers and engineers and to build from their strengths to expand their skills and participation in science and engineering. The project goals are to: 1) develop an innovative inclusive approach to informal engineering education for LatinX students that can broaden their engineering participation and that of other underrepresented groups, (2) to galvanize collaborations across diverse local, national, and international stakeholders to create a STEM learning ecosystem and (3) to advance knowledge about a STEM pedagogy that bridges personal-cultural identity and experience with engineering knowledge and skills. Project deliverables include a conceptual framework for a strength-based approach to engineering education for LatinX youth, a program model that is asset based, a collection of educational resources including a club guide for how to scaffold culturally responsive engineering challenge activities, an online training course for club leaders, and a mentoring strategy for university engineering students working with middle school youth. Project partners include the global education organization, iEARN, the Society of Women Engineers, and various University engineering programs.

The research study will employ an experimental study design to evaluate the impact on youth participating in the Design Squad LatinX programs. The key research questions are (1) Does participation increase students' positive perceptions of themselves and understanding of engineering and global perspectives? (2) To what extent do changes in understanding engineering vary by community (site) and by student characteristics (age, gender, ethnicity)? (3) Do educators and club leaders increase their positive perceptions of youths' funds of knowledge and their own understanding of engineering? and (4) Do university mentors increase their ability to lead informal engineering/STEM education with middle school youth? A sample from 72 local Design Squad LatinX clubs with an enrollment of 10-15 students will be drawn with half randomly assigned to the participant condition and half to the control condition. Methods used include pre and post surveys, implementation logs for checks on program implementation, site visits to carry out observations, focus groups with students and interviews with adult leaders. Data will be analyzed by estimating hierarchical linear models with observations. In addition, in-situ ethnographically-oriented observations as well as interviews at two sites will be used to develop qualitative case studies.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Mary Haggerty
resource project Professional Development, Conferences, and Networks
This project will advance evidence-based efforts to broaden informal STEM engagement via the 2019 Inclusive Science Communication (Inclusive SciComm) Symposium, to be held September 27-29, 2019, at the University of Rhode Island in Kingston, Rhode Island. Science communication, defined as any information exchange designed to engage targeted audiences in conversations or activities related to STEM topics, is a rapidly expanding area of research and practice with the potential to significantly increase public participation and sense of belonging in STEM fields. That said, there are few opportunities for its practitioners and scholars to convene around how to make their work both inclusive and equitable, which collectively acknowledge identity, cultural differences, and epistemologies as part of broadening participation. The 2019 symposium will address this gap through panels, workshops, and posters focused on three themes that represent critical and difficult aspects of inclusive science communication: (1) New Languages, Practices, Knowledge, and Research; (2) Changing Systems and Structures through Science Communication; and (3) Social Responsibility and Ethics. Within these themes, sessions will be organized to address major barriers of absence identified by participants in the 2018 Inclusive SciComm Symposium: skills, lessons learned, and knowledge gaps, especially with regard to facilitating difficult conversations across difference (critical dialogue). The symposium also will emphasize the need to integrate research and practice to advance inclusive, equitable, and intersectional approaches to science communication.

There is an urgent need to question assumptions and examine evidence regarding how science communicators and scholars approach efforts to broaden participation, but insufficient data exist on the inputs and outputs of inclusive and equitable practice. Critical dialogue about potentially uncomfortable topics such as privilege, power, or marginalization is an essential tool for inclusive practice and pedagogy. Finding from the 2018 Inclusive SciComm Symposium indicated that many educators and practitioners lack the language, skills, or confidence to initiate this type of dialogue. This project supports the knowledge-building component of the 2019 Inclusive SciComm Symposium to inform future science communication training, practice, and scholarship, by building on preliminary data collected during the 2018 symposium and responding to the need for more robust evaluation of science communication activities. Applying the Theory of Planned Behavior, the project will employ pre/post symposium surveys to investigate how 2019 symposium activities affected knowledge, attitudes, subjective norms, and efficacy (the variables of the Theory of Planned Behavior) of attendees with regard to critical dialogue. Focus groups at the symposium will be used to identify priority research areas related to inclusion, generally, and critical dialogue, specifically, that could advance inclusive science communication practice and beneficial outcomes. The project also will evaluate symposium impacts with regard to 1) attendees' opinions on utility of symposium components for advancing inclusive science communication and 2) how attendees' experience and response orientations inform their approaches to difficult science communication conversations. Qualitative data from the surveys and focus groups will be thematically coded using constant comparison.

This project will have strategic impact for inclusive science communication practice and, therefore, for informal learning and public engagement with STEM topics. Increasing awareness and effective implementation of critical dialogue by science communicators and trainers should enhance both for ethical engagement of traditionally under-represented and marginalized groups and should foster diverse types of public participation in societal debates about scientific issues. The outcomes of this research will benefit and link the complementary, but often siloed, fields of informal science learning and science communication. A final report will summarize research findings and offer specific next steps to advance inclusive science communication practice and research, especially with regard to fostering critical dialogue. The report will be posted on inclusivescicomm.org and distributed via a national network of partners working in informal science education, science communication, and public engagement.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sunshine Menezes Hollie Smith
resource project Professional Development, Conferences, and Networks
STEAM, the use of art as a context and tool for science education, is currently a hot topic in the science education field. In almost all instances of study and practice, it involves the use of science-themed or science-informed art in science education. As such, it does not take advantage of the majority of artistic output that does not have an obvious connection to science. The National Academies of Sciences, Engineering and Medicine recently called for more research to expand the "limited but promising" evidence that integrating arts and humanities with science education leads to better learning. The goal of this 2.5-day conference is to bring together representatives of both art and science groups to have a shared discussion around how non-scientific art can influence science education in theory, and how we can apply empirical results to the theory. For purposes of this conference, "non-science art" is defined as art that was not inspired by science. Conference attendees will include researchers (art and science education researchers) and practitioners (artists, art museum interpreters, and science educators). The conference will take place during the 2020 Black Creativity exhibition at the Museum of Science and Industry, Chicago. It is anticipated that by holding the conference at that time the audience for the conference and its impact will be informed by more diverse attendance.

The conference will be implemented starting with a pre-conference reading. Attendees will be sent a copy of the white paper from the Art as a Way of Knowing report for background reading and also asked to contribute to a Google Document that describes their various contexts. Each day of the conference will focus on a theme -- state of the field and possibilities and research -- and be comprised of large and small group interactions. Attendees will be invited from the ranks of practitioners, researchers and educators in the art and science education fields; several slots will be available for open (non-invited) participants. Key outcomes include: (a) a summary of all the research that has been conducted on using non-science art in science education, (b) starting points for building a theory on why non-science art can be used in science education; and (c) a list of specific research topics that would help inform, advance, and test the theory. In addition to assessing satisfaction with the conference, evaluation will also include a one-year post conference survey to investigate impact of participation in the conference.

This conference will generate products that will give guidance to both researchers and practitioners who want to use art in science education. These products include a white paper synthesizing the discussion and appendices that include raw transcripts and a bibliography of resources. Another product is a roadmap to create interventions that can be studied, which should lead to a stronger, more rigorous theory of practice about how art can be integrated into science education.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Aaron Price Jana Greenslit Manuel Juarez