Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource project Public Programs
The University of Montana spectrUM Discovery Area will implement “Making Across Montana” —a project to engage K–12 students and teachers in rural and tribal communities with making and tinkering. In collaboration with K–12 education partners in the rural Bitterroot Valley and on the Flathead Indian Reservation, the museum will develop a mobile making and tinkering exhibition and education program. The exhibition will be able to travel to K–12 schools statewide. The project team will develop a K–12 teacher professional development workshop, along with accompanying curriculum resources and supplies. The traveling program and related materials will build schools’ capacity to incorporate making and tinkering—and informal STEM experiences more broadly—into their teaching.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource project Public Programs
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
DATE: -
TEAM MEMBERS: David Uttal Amanda Dickes Leigh Peake Catherine Haden
resource project Public Programs
Research suggests that when both science, technology, engineering, and mathematics (STEM) education and social-emotional development (SED) are supported in afterschool, summer, and other informal settings, young people can better develop skills for the future such as leadership, decision-making, and relationship-building so they could have successful careers/participation in STEM. However, researchers and practitioners working in the out-of-school time (OST) sector often do so without connections across these fields. The appeal for more integration of STEM and SED in OST program delivery and data collection has remained abstract and aspirational. This Literature Review and Synthesis project is the next step needed to move the OST field toward the intentional, explicit, and evidence-based integration of STEM and SED in research and practice. The project will create shared understanding necessary to improve program content, staff training, and evaluation. This synthesis will support future research on unified STEM+SED that can lead to more effective, equitable, and developmentally appropriate programming. Improved programming will contribute to talent development, address STEM workforce needs, and promote socioeconomic mobility to benefit children, youth, educators, and society. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This project will systematically examine what domains and skills at the interface of STEM+SED are most researched among K-12 youth in informal STEM learning environments, compared to formal STEM educational environments. The team will further explore how gender, race, and other intersectional forms of equity can be added to the STEM+SED equation. The project team will search and appraise empirical and gray literature (2001-2020) to identify the most commonly researched domains and skills at the interface of STEM+SED in informal environments serving K-12 youth. The review and synthesis process will include four steps: search, appraisal, synthesis, and analysis. The search will begin with STEM+SED skills in four foundational domains (agency, belonging, engagement, and reflection) identified previously with experts from the fields of STEM and SED. The search will include all existing, eligible references from formal K-12 settings to contrast commonly studied domains and skills (e.g., perseverance, self-regulation, teamwork, complex problem-solving, self-awareness) in formal versus informal learning environments. The study approach will then compare these domains and skills by the demographics variables noted above. Following the creation of a strong catalog of evidence, information will be synthesized using three “pillars” for building coherence in STEM+SED integration: phenomenon (the knowing), implementation (the doing) and assessment (the result). These pillars will be used to organize and critically analyze the literature. Building conceptual coherence through a systematic review and synthesis of literature from the fields of STEM and SED will lead to greater understanding of STEM+SED in OST practice, highlight the most important content and skills to learn in informal environments, and identify when and how youth should learn specific content and skills at the interface of STEM+SED. Applying coherence to the integration of STEM+SED ensures that the principles and practices are layered carefully, in ways that avoid superficial checklists or duplication of effort and build meaningfully upon young people’s knowledge and skills. The long-term goal is to broker connections and alignment of STEM+SED across schools and OST programs. Recommendations and a roadmap to guide equitable, effective STEM+SED research, practice, and policy will result from this research.
DATE: -
TEAM MEMBERS: Gil Noam Patricia Allen
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
Underrepresented minorities (URMs) represent 33% of the US college age population and this will continue to increase (1). In contrast, only 26% of college students are URMs. In the area of Science Technology, Engineering and Mathematics (STEM), only 15% of college students completing a STEM major are URMs (2). While there have been gains in the percent of Hispanic and Black/African Americans pursuing college degrees, the number of Native American college students remains alarmingly low. In 2013, Native Americans represented only 1% of entering college students and less than 50% finished their degree. Moreover, 1% of students pursuing advanced degrees in STEM-related fields are Native American/Alaska Native. With regards to high school graduation rates, the percent of Native American/Alaska Native students completing high school has decreased with only 51% of students completing high school in 2010 compared to 62 % and 68% for Black and Latino students respectively. While identifying ways to retain students from all underrepresented groups is important, developing programs targeting Native American students is crucial. In collaboration with the Hopi community, a three-week summer course for Native American high school students at Harvard was initiated in 2001. Within three years, the program expanded to include three additional Native American communities. 225 students participated in the program over a 10-year period; and 98% of those responding to the evaluation completed high school or obtained a GED and 98% entered two or four year colleges including 6 students who entered Harvard. This program was reinitiated in 2015 and we plan to build on the existing structure and content of this successful program. Specifically, in collaboration with two Native American communities, the goal of the program is 1) to increase participants’ knowledge of STEM disciplines and their relevance to issues in participants’ communities via a three week case-based summer course for Native American high school students; 2) to help enhance secondary school STEM education in Native American communities by providing opportunities for curriculum development and classroom enhancement for secondary school teachers in the participating Native American communities; and 3) to familiarize students with the college experience and application process and enhance their readiness for college through workshops, college courses and internships. Through these activities we hope to 1) increase the number of Native American students completing high school; 2) increase the number of Native American students applying and being accepted to college; 3) increase the number of Native American students pursuing STEM degrees and careers; 4) increase the perception among Native American students that attending and Ivy plus institution is attainable; 5) increase the feeling of empowerment that they can help their community by pursuing advanced degrees in STEM.

PUBLIC HEALTH RELEVANCE:
This proposal supports a summer program for high school students and teachers from Native American communities. The program goals are to encourage students to complete high school and prepare them for college and to also consider degrees in science, technology, engineering, and math.
DATE: -
TEAM MEMBERS: Sheila Thomas
resource project Public Programs
This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the State of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

The potential insights this research could garner on intersectionality between formal and informal STEM learning are substantial. As a consequence, this project is co-funded by the Advancing Informal STEM Learning (AISL) and Discovery Research K-12 (DRK-12) Programs. The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. Likewise, the Discovery Research-K12 Program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -