Skip to main content

Community Repository Search Results

resource project Public Programs
This project aims to develop and implement residential and non-residential science camp and summer camp programs and related activities to over 1500 youth and teachers from 8 elementary and middle schools. NOAA's Multicultural Education for Resource Issues Threatening Oceans (MERITO) program will serve as a key outreach mechanism to reach underserved youth and their families. The proposed project will utilize existing ocean educational materials, including those developed by NOAA, in experiential learning programs for youth through Camp SEA (Science, Education, Adventure) Lab. The two major goals of the project are: (1) to develop and implement marine-oriented outdoor science and summer camps in close collaboration with the Monterey Bay National Marine Sanctuary, resulting in an effective model for dissemination of the Ocean Literacy Essential Principles and Fundamental Concepts to large numbers of youth and their teachers; and 2) to develop a model and a feasibility plan to implement the program across a broader geographical area, e.g. through other National Marine Sanctuaries.
DATE: -
TEAM MEMBERS: Nicole Crane
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource project Public Programs
The long-term goal of this project is to expand and disseminate our innovative internship and near-peer mentoring models for minority youth and women in the biomedical sciences, thus increasing the number of minority students participating in the quantitative disciplines. Dissemination and expansion of the program will take place in three steps: (1) Within the national capital region through the Internet and cooperative arrangements with established educational initiatives within DCPS system; (2) For year 2, expand to one site outside the national capital area. The site would be for a group that had already begun to model its fledgling program on our STARS program, or one of the specific sites discussed in Aim 3. The likely site would be at Fort Monmouth, N.J., since Dr. Constella Zimmerman is planning to start a STARS initiative; and (3) Extend the program to specific sites within selected cities, and utilize current contacts in states that do not yet have a SEPA program to disseminate.
DATE: -
TEAM MEMBERS: Marti Jett Debra Yourick