The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.
Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
The historical under-representation of diverse youth in environmental science education is inextricably connected to access and identity-related issues. Many diverse youth with limited previous experience to the outdoors as a source for learning and/or leisure may consider environmental science as ‘unthinkable’. This is an ethnographic study of 16 diverse high school youths’ participation, none of who initially fashioned themselves as ‘outdoorsy’ or ‘animal people’, in a four-week summer enrichment program focused on herpetology (study of reptiles and amphibians). To function as ‘good’
The evaluation study supports the project Distance Learning Education Programs at the Saint Louis Zoo. To better understand what teachers want and need, and the characteristics of the settings in which their students learn, the Zoo conducted an online survey of the teachers of students with special needs in May 2014. The purpose of this evaluation was to clarify and expand the survey findings to support the design, development, and implementation of the Zoo distance learning curriculum so that it works effectively across a variety of school settings for K12 students with special needs and
This review of literature summarizes findings from current research on the development of empathy in childhood, and implications for developing zoo and aquarium programs that can strengthen children's sense of empathy. Key practices include: intentional framing of conversations about animals, modeling empathy - and providing opportunities for children to practice it, offering opportunities for direct interaction with animals, building children's understanding of the similarities and differences between the needs of humans and of other animals, and activating children's imagination to help them
Three accredited zoos and aquariums in the Pacific Northwest are collaborating on a project aimed at developing tools to assess program effectiveness in encouraging children's empathy towards animals. This short briefing paper outlines the team's initial work to 1) gain a shared understanding and definition of the construct (empathy towards animals) and how it develops during childhood, and 2) review existing research on the link between empathy and beneficial action towards wildlife, and 3) summarize research findings on best practices towards encouraging empathy.
Positive youth development and youth organizing are strengths-based approaches to the lives, needs, and contributions of young people (Damon & Gregory, 2003). These approaches privilege the voices of youth as they engage with issues in their communities and challenge institutions to respond. Few studies, however, have explored the role of positive youth development and youth organizing initiatives among immigrant youth of color. The challenging terrain of modern urban life requires these youth to navigate the political, economic, and legal demands confronted by their families; to understand
DATE:
TEAM MEMBERS:
Anthony de JesusSofia OviedoScarlett Feliz
Naturalists act as our link between scientific knowledge and the public’s understanding of natural history and conservation efforts. In order for them to succeed, they need access to reference materials as well as up-to-date information (Mankin, Warner, & Anderson, 1999). Incorporating mobile technology (i.e. tablets) into naturalists’ endeavors in natural history and environmental education can be used as supportive and educational tools. My project investigated how newly trained naturalists used tablet technology while leading groups of children on nature hikes. I investigated naturalists’
DATE:
TEAM MEMBERS:
Abuin Marishka Radzewich St. ClairKristy Daniel (Halverson)
Informal science education is a field of study that is becoming increasingly popular and important in the world of science, especially regarding elementary students. It is important to understand how students with learning disabilities and individual education plans react to informal learning experiences. This case study seeks to reveal the experiences of two students with an individual educational plan due to Attention Deficit and Hyperactivity Disorder (ADHD) when participating in an informal nature hike associated with the Over, Under, and Through: Students Informally Discover the
DATE:
TEAM MEMBERS:
Ashleigh DavisKristy Daniel (Halverson)
resourceprojectProfessional Development, Conferences, and Networks
The National Writing Project (NWP) is collaborating with the Association of Science-Technology Centers (ASTC) on a four-year, full-scale development project that is designed to integrate science and literacy. Partnerships will be formed between NWP sites and ASTC member science centers and museums to develop, test, and refine innovative programs for educators and youth, resulting in the creation of a unique learning network. The project highlights the critical need for the integration of science and literacy and builds on recommendations in the Common Core State Standards and the National Research Council's publication, "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The content focus includes current topics in science and technology such as environmental science, sustainability, synthetic biology, geoengineering, and other subjects which align with science center research and exhibits. The project design is supported by a framework that incorporates a constructivist/inquiry-based approach that capitalizes on the synergy between rigorous science learning and robust literacy practices. Project deliverables include a set of 10 local partnership sites, professional development for network members, a project website, and an evaluation report highlighting lessons learned. Partnership sites will be selected based on interest, proximity, history, and expertise. Two geographically and demographically diverse cohorts, consisting of five partnerships each will be identified in Years 2 and 3. Each set of partners will be charged with creating a comprehensive two-year plan for science literacy activities and products to be implemented at local sites. It is anticipated that the pilot programs may result in the creation of new programs that merge science and writing, integrate writing into existing museum science programs, or integrate science activities into existing NWP programs. Interest-driven youth projects such as citizen science and science journalism activities are examples of programmatic approaches that may be adopted. The partners will convene periodically for planning and professional development focused on the integration of science and literacy for public and professional audiences, provided in part by national practitioners and research experts. A network Design Team that includes leadership representatives from NWP, ASTC, and the project evaluator, Inverness Research, Inc., will oversee project efforts in conjunction with a national advisory board, while a Partnership Coordinator will provide support for the local sites. Inverness Research will conduct a multi-level evaluation to address the following questions: -What is the nature and quality of the local partner arrangements, and the larger network as a whole? -What is the nature and quality of the local science literacy programs that local partners initiate, and how do they engage local participants, and develop their sense of inquiry and communication skills? First, a Designed-Based Implementation Research approach will be used for the developmental evaluation to assess the implementation process. Next, the documentation and portrayal phase will assess the benefits to youth, educators, institutions, and the field using surveys, interviews, observations of educators, and reviews of science communication efforts created by youth. Finally, the summative evaluation includes a comprehensive portfolio of evidence to document the audience impacts and an independent assessment of the project model by an Evaluation Review Board. This project will result in the creation of a robust learning community while contributing knowledge and lessons learned to the field about networks and innovative partnerships. It is anticipated that formal and informal educators will gain increased knowledge about science and literacy programs and develop skills to provide effective programs, while youth will demonstrate increased understanding of key science concepts and the ability to communicate science. Programs created by the local partnerships will serve approximately 650 educators (450 informal educators and 200 K-12 teachers) and 500 youth ages 9-18. Plans for dissemination, expansion, and sustainability will be undertaken by the sub-networks of the collaborating national organizations drawing on the 350 ASTC member institutions and nearly 200 NWP sites at colleges and universities.
The University of Alaska Fairbanks will partner with the National Optical and Astronomy Observatory, the University of Alaska Museum of the North, and the University of Washington-Bothell to bring biomaterials, optics, photonics, and nanotechnology content, art infused experiences, and career awareness to art-interested girls. This full scale development project, Project STEAM, will explore the intersections between biology, physics, and art using advanced technologies at the nano to macro scale levels. Middle school girls from predominately underrepresented Alaskan Native, Native American (Tohono O'odham, Pascula Yaqui) and Hispanic groups, their families, teachers, and Girl Scout Troop Leaders in two site locations- Anchorage, Alaska and Tucson, Arizona will participate in the project. Centered on the theme "Colors of Nature," Project STEAM will engage girls in science activities designed to enhance STEM learning and visual-spatial skills. Using advanced technologies, approximately 240 girls enrolled in the Summer Academy over the project duration will work with women scientist mentors, teachers, and Girl Scout Troop Leaders to create artistic representations of natural objects observed at the nano and macro scale levels. Forty girls will participate in the Summer Academy in year one (20 girls per site- Alaska and Arizona). In consequent years, approximately180 girls will participate in the Academy (30 girls per site). Another 1,500 girls are expected to be reached through their Girl Scout Troop Leaders (n=15) who will be trained to deliver a modified version of the program using specialized curriculum kits. In addition, over 6,000 girls and their families are expected to attend Project STEAM Science Cafe events held at local informal science education institutions at each site during the academic year. In conjunction with the programmatic activities, a research investigation will be conducted to study the impact of the program on girls' science identity. Participant discourse, pre and post assessments, and observed engagement with the scientific and artistic ideas and tools presented will be examined and analyzed. A mixed methods approach will also be employed for the formative and summative evaluations, which will be conducted by The Goldstream Group. Ultimately, the project endeavors to increase STEM learning and interest through art, build capacity through professional development, advance the research base on girls' science identity and inspire and interest girls in STEM careers.
Expanding on the encouraging outcomes of an NSF-funded conference, this three-year project led by the National Center for Science and Civic Engagement at Harrisburg University of Science and Technology, in collaboration with the Koshland Science Museum of the National Academy of Sciences, will explore and evaluate ways to support new collaborations between professionals in institutions of higher education and informal STEM education around areas of common interest. The primary goal is to develop the educational infrastructure to grow and efficiently sustain multiple cross-organizational partnership activities at the intersection of learning about science, society and civic engagement around such possible topics as energy, environment, genetics, earth resources, computers and ethics, nanotechnology, etc. The initiative is: 1) creating a joint organizing "secretariat" to provide communications and support through low-cost shared services for at least six partnerships around the country; 2) providing partnership support and technical assistance to seed the six national partnerships, and 3) sharing evaluation and analysis services across all the partnerships. The outcomes of the work pertain to improvements in professional knowledge and practice in higher education and informal science education, as well as the improvement of learning by undergraduates and by the general public.
The United States Botanic Garden (USBG) contracted RK&A to explore visitors’ interest in and understanding of the design and interpretation presented in four conservatory rooms—Rare and Endangered Species, Plant Adaptations, Medicinal Plants, and Garden Primeval. Two rooms were quite small and the other two rooms were larger. Each room was designed to support a theme and included a variety of signage to support the theme (e.g., plant ID signs, ephemeral signs, thematic signs). Findings from this study will be used in part to inform a new interpretive strategy for the Garden. How did we