This innovative research project promotes the progress of science, enhances the national STEM workforce, and benefits society by helping to overcome the challenge of broadening participation of those who are underrepresented in STEM fields. Although many programs designed to broaden participation exist, few individuals in "STEM-disenfranchised" populations -- individuals who feel alienated, marginalized, or incapable of participating in STEM -- choose to make use of these opportunities, due mainly to their own self-identities. This project's focus is on three STEM-disenfranchised groups: 1) adults who have been recently released from incarceration; 2) youth who have been released from juvenile custody; and 3) refugee youth, and builds on existing science education programs. The research team will establish the "Alliance to Strengthen the STEM Tapestry (ASSiST)" -- with members from academia, workforce agencies, NGOs, and government agencies -- to explore how individuals who have an identity prematurely tied to failure in science might benefit from novel interventions that promote a shift of self-identity to becoming science learners, which will then lead them to explore STEM education and job training resources that already exist. Three novel interventions will involve drama activities, story- telling, and ecological restoration projects. This bold approach is designed to help these populations interweave their diverse ways of knowing with STEM workforce, higher education, and to become science-aware citizens, which will enhance U.S. leadership in STEM. ASSisT will create a strategic plan that can be interwoven with those of other NSF INCLUDES Alliances, and identify pathways to distribute outcomes to a national level. This work will provide pathways to bring other groups that are disenfranchised and who -- if motivated and directed -- could strengthen the STEM workforce and education tapestry.
Investments to broaden participation in science in the USA have supported abundant programs and resources, but few individual in "STEM-disenfranchised" populations -- individuals who feel alienated, marginalized, or incapable of participating in STEM -- choose to make use of these opportunities, due most significantly to their own self-identities. The proposed "Alliance to Strengthen the STEM Tapestry (ASSisT)" will carry out research on novel interventions that are designed to lead these individuals to avail themselves of the science education and training resources that already exist. The initial focus is on: 1) adults who have been recently released from incarceration; 2) youth who have been released from juvenile custody; and 3) refugee youth. Using a collective impact approach, ASSisT will carry out early-exploratory research to investigate how the project's novel interventions -- 1) ecological restoration, 2) story-telling/autoethnography, and 3) devised theater -- might shift participants towards self-identification and subsequent involvement with the STEM community. The Intellectual Merit of our approach is grounded in social science research, specifically, identity theory, social cognitive theory, and resilience theory. Using a one-group pretest-posttest design, qualitative research techniques will identify which elements are most critical to foster change, e.g., perceived competence in STEM subjects, congruence of self-perception with those in STEM, mastery of STEM workforce skills, and/or the importance of being a STEM-aware citizen. Broader impacts relate directly to NSF's call for greater STEM participation of women and underrepresented ethnic and socioeconomic minorities with impacts on the initial 30 cohort members for this pilot project. ASSisT will: create a common agenda; recruit cohorts of each STEM-disenfranchised group; design and implement research to test novel interventions; populate a STEM opportunities map; evaluate and analyze outcomes; articulate a strategic plan that can be interwoven with those of other NSF INCLUDES Alliances; and identify pathways to disseminate outcomes and benchmarks to a national level.
DATE:
-
TEAM MEMBERS:
Nalini NadkarniJordan GertonDiane PatakiSydney Cheek-O'DonnellRussell Isabella
"Strengthening Networks, Sparking Change: Museums and Libraries as Community Catalysts" combines findings from a literature scan and input from the library, museum and community revitalization fields with case studies about the experiences and vision of museums and libraries working to spur change in their communities. It describes the complementary conceptual frameworks of social wellbeing and collective impact and explains how libraries and museums can use these concepts to partner with community-based organizations, government agencies and other cultural or educational organizations. It
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.
*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE:
-
TEAM MEMBERS:
Kristin RuppelClifford MontagneLisa Lone Fight
Through the NSF Innovation Corps for Learning Program, (I-Corps L), this project will develop ways to enable the SciStarter program to extend the promise of citizen science by connecting millions of citizen scientists with scientists in need of their help through formal and informal research projects. Citizen science is a fast growing field that engages the public in scientific inquiry through data collection projects and environmental monitoring using sensors, mini spectrometers, water testing kits and other tools. A challenge for the citizen science community has been access to the tools required to collect the types of data needed in citizen science projects. SciStarter facilitates broader participation in citizen science by reducing the barrier for volunteers to identify, acquire, and use the right scientific tools and instruments for each project. This I-Corps for Learning project will develop approaches to enable SciStarter to provide a larger number of citizen scientists with easier access to required and recommended instruments needed for meaningful participation in citizen science projects.
SciStarter aims to provide a holistic solution to the needs of citizen scientists that includes projects, support, and products such as training materials and consulting. SciStarter can be a catalyst in citizen science by connecting people to opportunities to engage and in lowering barriers to public participation in scientific research while creating a hybrid academic-consumer sustainability model. A central focus of this current effort will be establishing a sustainable and scalable means of enabling citizen scientists to obtain equipment and instruments in an efficient and cost-effective manner. The project will make use of elements already in place to expand the engagement of citizen scientists in new or multiple projects, to empower citizens in the process of citizen science, and to provide a useful, scalable and sustainable solution for scientists leading citizen science research projects. The extension of SciStarter will set the stage for greater inclusion of previously marginalized groups in citizen science activities and will extend to all forms of public engagement in science.
As part of an overall strategy to enhance learning within informal environments, the Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models poised to catalyze well-integrated interdisciplinary research and development efforts within informal contexts that transform scientific understanding of the food, energy, and water systems (FEWS) nexus in order to improve system function and management, address system stress, increase resilience, and ensure sustainability. This project addresses this aim by using systems thinking and interdisciplinary integration approaches to develop a novel immersive educational simulation game and associated materials designed to highlight the role and importance of corn-water-ethanol-beef (CWEB) systems in supporting the ever increasing demands for food, energy, and water in the United States. The focus on FEWS and sustainable energy aligns well with both the INFEWS program and the sizable sustainability-related projects in the AISL program portfolio. The development and broad dissemination of a multiuser game specific to CWEB systems are particularly innovative contributions and advance for both program portfolios and their requisite fields of study. An additional unique feature of the game is the embedding of varying degrees of economic principles and decision-making along with the nuisances of cultural context as salient variables that influence systems thinking. Of note, a team of computer science, management and engineering undergraduate students at the University of Nebraska - Lincoln will be responsible for the engineering, development, and deployment of the game as their university capstone projects. If successful, this game will have a significant reach and impact on youth in informal programs (i.e., 4-H clubs), high school teachers and students in agriculture vocational education courses, college students, and the public. The impact could extend well beyond Nebraska and the targeted Midwestern region. In conjunction with the game development, mixed-methods formative and summative evaluations will be conducted by an external evaluator. The formative evaluation of the game will focus on usability testing, interest and engagement with a select sample of youth at local 4-H clubs and youth day camps. Data will be collected from embedded in-game survey questionnaires, rating scales, observations and focus groups conducted with evaluation sample. These data and feedback will be used to inform the design and refinement of the game. The summative evaluation will focus on the overall impacts of the game. Changes in agricultural systems knowledge, attitudes toward agricultural systems, interest in pursuing careers in agricultural systems, and decision making will be aligned with the Nebraska State Science Standards and tracked using the National Agricultural Literacy Outcomes (NALOs) assessment, game analytics and pre/post-test measures administered to the evaluation study sample pre/post exposure to the game.
DATE:
-
TEAM MEMBERS:
Jeyamkondan SubbiahEric ThompsonDeepak KeshwaniRichard KoelschDavid Rosenbaum
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.
This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE:
-
TEAM MEMBERS:
David WatkinsBuyung AgusdinataChelsea SchellyRachael ShwomJenni-Louise Evans
The Fluid Earth Viewer (FEVer), an interactive and visually appealing web application that will allow users to visualize current and past conditions of our planet's atmosphere and oceans will be built via this award. This free web application, available to anyone with an internet connection, will directly impact approximately 2,000 individuals in-person through three field tests and is expected to reach many more online.
FEVer will be an extension of an existing open-source web application, and the PIs will add polar data sets, extended options in the user interface, and the ability to view historical climate/weather data to the existing "earth" app. It will be a vehicle of modern Earth science communication, making information most often used by the scientific community accessible and engaging to broader communities. In particular, it will provide hands-on visualization of the important climatic role of the polar-regions, their connections to lower latitudes, and the changes they are undergoing. A companion website, FEVer-Ed, will provide background, educational support, and opportunities for additional learning through a gallery of historically interesting atmospheric and oceanic events. FEVer will serve as a gateway to data sets that have otherwise been inaccessible to audiences outside of the research community. While a number of large data sets are included in this proposal (regional and global operational weather models/reanalyses), the platform is scalable to include other data such as ice sheet and glacier dynamics.
This project is partially funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The project will conduct a nation wide study to address three broad questions:
(1) How does the public view zoos and aquariums and how do these institutions affect STEM (Science Technology Engineering Mathematics) learning outside their walls?
(2) How do visitors experience zoos at different stages in their lives and how do zoo visits affect their knowledge and perspectives concerning environmental issues and conservation?
(3) What are the entry characteristics of visitors and how do those characteristics play out in behaviors during a visit?
The project is designed to advance understanding of how informal STEM learning emerges through the intersection of institutional pedagogy and learning goals and the characteristics of individuals and their social and cultural backgrounds. As the first institutional study that advances a field-wide research agenda, the project will map how to implement a national collaborative effort that can help refine program delivery and cooperation between zoos, aquariums and other STEM learning institutions.
The study will describe zoo and aquarium visitors based on a broad understanding of demographics, group, and individual perspectives to expand understanding of how these factors influence visitor learning and how they view the relevance of educational messages presented by zoos and aquariums. The project will result in reports, workshops and a handbook presenting findings of practical value for educators, a research platform and research tools, online discussion forums, and directions for future research. The project, led by New Knowledge Organization (NKO), will be carried out through the collaboration of NKO with other informal research organizations and the Association of Zoos and Aquariums (AZA) with its 230 informal science learning institutional members. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
Community education with regard to science comes in many forms and is usually designed to address issues within that community. In this proposal, land use is the focus. This is a general topic and applicable in nearly all locations within communities and in the State. In this case, the topic is used to educate adults and high school students providing each with unique identities. Using satellite-enabled tools, the topology of an area can be mapped in detail and assessed for use thus enabling science education for both adults and high school students. The studies will involve intergenerational learning which is an area needing additional study. Also, the proposers are going to broaden the scope so that it impacts several different areas in the State of Connecticut. This is important because in doing so it will include the diversity of cultures within the State and the education results will reflect this diversity. As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This proposed effort aims to promote lifelong STEM learning through a focus on conservation, geospatial technology and community engagement. The goals are to: (1) develop particular STEM knowledge and skills, and foster STEM identity authoring/learning in two disparate groups of lifelong learners, and (2) gain a deeper understanding of the ways that this learning occurs through research and evaluation. The project will develop an educational program that focuses on conservation science and recent advances in web-enabled geospatial technologies (geographic information systems, remote sensing, and global positioning systems) that, for the first time, make these technologies accessible and attainable for the public. The focus will be on urban and rural areas with underrepresented populations of STEM learners. Two groups of lifelong learners will be targeted: adult volunteers involved with community land conservation issues, and high school-aged adolescents enabling the project to investigate the processes and impacts of intergenerational learning.
DATE:
-
TEAM MEMBERS:
John VolinDavid MossDavid CampbellChester ArnoldCary Chadwick
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program supports new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This project will meet this goal through rigorous research and the broad implementation of an environmental science literacy professional development and learning program for informal educators and youth engaged in outdoor science programs (OSP). With growing support from the literature and the Next Generation Science Standards (NGSS), much attention has been placed on creating and leveraging interdisciplinary science learning opportunities beyond science classrooms. As such, an estimated 300 residential OSPs currently exist in the United States. Unfortunately, the informal educators often charged with facilitating these deep and impactful science learning experiences often lack robust formal training in evidenced-based, age-appropriate environmental science content knowledge and pedagogy specific for the youth in their programs. This issue is often more pronounced in under-resourced and under-served programs and communities. This project will directly address these pervasive challenges in the field by not only providing much needed science focused professional development and resources to informal educators but also by specifically targeting and training informal leaders and educators serving youth in predominately rural areas, low-income communities, and underrepresented communities.
Approximately 200 OSP leaders at 100 OSPs around the country will participate in a week-long, intensive training in the professional development model at one of five regional residential leadership institutes. OSP leaders will then redeliver the training to the approximately 1,500 OSP educators/field instructors in their home institutions. The OSP educators/field instructors will then use what they learn through the professional development to facilitate the environmental science learning program (i.e., curriculum, field experiences, resources, pedagogy) to over 1 million youth (grades 3-8) enrolled in their residential outdoor science programs. In addition, a rigorous implementation study, efficacy study and evaluation will be conducted. The implementation study will investigate: (a) Which of the professional learning model practices were implemented and (b) What successes and challenges the programs faced implementing the model. The mixed methods efficacy study will explore: (a) if outdoor science programs contribute to the development of science learning activation and environmental literacy? and (b) what are the features of these experiences that are correlated with increases in science learning activation and environmental literacy. Approximately 25-35 youth will be randomly selected from each of 50 randomly selected sites to participate in the efficacy study. The data and findings from the research and evaluation produced by this project will contribute to a relatively sparse knowledge and research base specific to youth efficacy and implementation processes and practices across nearly 1/3 of the estimated 300 existing residential outdoor science programs in the United States.
Youth environmental education (EE) programs often serve as gateway experiences in which diverse audiences engage in informal science learning. While there is evidence that these programs can have positive impacts on participants, little empirical research has been conducted to determine what makes one program more successful than another. To be able to conduct such research, this Exploratory Pathways study will (1) develop and statistically validate ways to measure meaningful outcomes for participants across a variety of programs and (2) test observational methods that will enable research that can determine which elements of program delivery most powerfully influence participant engagement and learning outcomes in different contexts. These efforts will include consultations with diverse subject matter experts from the National Park Service, nature centers, and academia; survey research with participants in afterschool and free-choice EE programs; and observations of EE programs designed to fine tune the measurement of program delivery elements and student engagement. Developing valid and reliable outcomes measures and observational protocols will enable a larger investigation that will specifically address the following research question: What program characteristics lead to the best learning outcomes for program participants in different contexts? This research will result in empirically tested guidelines that will enable educators to design and deliver more effective programs for a wide range of audiences in a wide range of contexts. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This effort will refine methods necessary to undertake an unprecedented study (and future AISL Research in Service to Practice proposal) to examine the linkages between pedagogical approaches, participant engagement, and learning outcomes in informal STEM-focused youth EE programs. The larger study will involve systematically observing a large number of programs to assess the use of different approaches and to link those approaches to engagement and learning outcomes through both observation and survey research. In this current study the team will develop and refine crosscutting outcome measures to ensure validity, reliability, and sensitivity by drawing upon the literature and consultation with key stakeholders to develop suites of indicators for subsequent psychometric testing and revision. They will also refine observational techniques for assessing pedagogical approaches through extensive testing of inter-rater reliability. Finally, techniques for measuring participant engagement, incorporating both observational techniques and retrospective participant surveys will be refined. The work will be conducted by researchers at Clemson University and Virginia Tech, in partnership with the U.S. National Park Service, the North American Association for Environmental Education, and the American Association of Nature Center Administrators. This work represents the first step in a longer research process to determine the "best practices" most responsible for achieving outcomes in a wide range of contexts.