Skip to main content

Community Repository Search Results

resource research Professional Development, Conferences, and Networks
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: K.C. Busch
resource research Public Programs
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Corrin Barros Canita Rilometo-Nakamura Paulina Yourupi-Sandy Adhann Iwashita Jo-Jikum
resource research Public Programs
With the ongoing need for water conservation, the American Southwest has worked to increase harvested rainwater efforts to meet municipal needs. Concomitantly, environmental pollution is prevalent, leading to concerns regarding the quality of harvested rainwater. Project Harvest, a co-created community science project, was initiated with communities that neighbor sources of pollution. To better understand how a participant’s socio-demographic factors affect home characteristics and rainwater harvesting infrastructure, pinpoint gardening practices, and determine participant perception of
DATE:
TEAM MEMBERS: Arthur Moses Jean McLain Aminata Kilungo Robert Root Leif Abrell Sanlyn Buxner Flor Sandoval Theresa Foley Miriam Jones Monica Ramirez-Andreotta
resource research Public Programs
Environmental health literacy (EHL) has recently been defined as the continuum of environmental health knowledge and awareness, skills and self-efficacy, and community action. In this study, an interdisciplinary team of university scientists, partnering with local organizations, developed and facilitated EHL trainings with special focus on rainwater harvesting and water contamination, in four communities with known environmental health stressors in Arizona, USA. These participatory trainings incorporated participants’ prior environmental health risk knowledge and personal experiences to co
DATE:
TEAM MEMBERS: Leona Davis Monica Ramirez-Andreotta Jean McLain Aminata Kilungo Leif Abrell Sanlyn Buxner
resource research Public Programs
Environmental health citizen science (CS) offers a strategy for historically disenfranchised community members to inform research questions, collect and analyze data, and draw conclusions about contaminants in their local environments to inform local action. In this study, direct feedback from demographically diverse participants and promotoras (community health workers) in a co-created environmental health CS project informs understanding of CS participant motivation, support, and barriers to participation. Study findings reflect a lack of association between participant self-efficacy and
DATE:
TEAM MEMBERS: Leona Davis Monica Ramirez-Andreotta Sanlyn Buxner
resource research Public Programs
BACKGROUND: Environmental health risks are disproportionately colocated with communities in poverty and communities of color. In some cases, participatory research projects have effectively addressed structural causes of health risk in environmental justice (EJ) communities. However, many such projects fail to catalyze change at a structural level. OBJECTIVES: This review employs Critical Interpretive Synthesis (CIS) to theorize specific elements of participatory research for environmental health that effectively prompt structural change in EJ communities. METHODS: Academic database search
DATE:
TEAM MEMBERS: Leona Davis Monica Ramirez-Andreotta
resource project Professional Development, Conferences, and Networks
Developing solutions to large-scale collective problems -- such as resilience to environmental challenges -- requires scientifically literate communities. However, the predominant conception of scientific literacy has focused on individuals, and there is not consensus as to what community level scientific literacy is or how to measure it. Thus, a 2016 National Academies of Sciences, Engineering, and Medicine report, “Science Literacy: Concepts, Contexts, and Consequences,” stated that community level scientific literacy is undertheorized and understudied. More specifically, the committee recommended that research is needed to understand both the i) contexts (e.g., a community’s physical and social setting) and ii) features of community organization (e.g., relationships within the community) that support community level science literacy and influence successful group action. This CAREER award responds to this nationally identified need by iteratively refining a model to conceptualize and measure community level scientific literacy. The model and metrics developed in this project may be applied to a wide range of topics (e.g., vaccination, pandemic response, genetically-modified foods, pollution control, and land-use decisions) to improve a community’s capacity to make scientifically-sound collective decisions. This CAREER award is funded by the Advancing Informal STEM Learning (AISL) and the EHR CORE Research (ECR) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the ECR program goal to advance relevant research knowledge pertaining to STEM learning and learning environments.

The proposed research will conceptualize, operationalize, and measure community level scientific literacy. This project will use a comparative multiple case study research design. Three coastal communities, faced with the need to make scientifically-informed land-use decisions, will be studied sequentially. A convergent mixed methods design will be employed, in which qualitative and quantitative data collection and analyses are performed concurrently. To describe the i) context of each community case, this project will use qualitative research methods, including document analysis, observation, focus groups, and interviews. To measure the ii) features of community organization for each community case, social network analysis will be used. The results from this research will be disseminated throughout and at the culmination of the project through professional publications and conference presentations as well as with community stakeholders and the general public. The integrated education activities include a professional learning certificate for informal science education professionals and STEM graduate students. This certificate emphasizes high-quality community-engaged scholarship, placing students with partners such as museums, farmer’s markets, and libraries, to offer informal learning programs in their communities. This professional learning program will be tested as a model to provide training for STEM graduate students who would like to communicate their research to the public through outreach and extension activities.
DATE: -
TEAM MEMBERS: K.C. Busch
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource research Public Programs
The Swinomish Indian Tribal Community developed an informal environmental health and sustainability (EHS) curriculum based on Swinomish beliefs and practices. EHS programs developed and implemented by Indigenous communities are extremely scarce. The mainstream view of EHS does not do justice to how many Indigenous peoples define EHS as reciprocal relationships between people, nonhuman beings, homelands, air, and waters. The curriculum provides an alternative informal educational platform for teaching science, technology, engineering, art, and mathematics (STEAM) using identification, harvest
DATE:
TEAM MEMBERS: Jamie Donatuto Larry Campbell Diana Rohlman Joyce K. LeCompte Sonni Tadlock
resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith
resource project Public Programs
Recognizing that race can influence African American youths' perception of which academic disciplines and careers are available to them, this pilot study will explore how African American youths' physical and social communities can be leveraged to support the evolution of their STEM identity and their ability to recognize their potential as scientists. Unfortunately, many of these youths live in communities that are void of critical resources that research has demonstrated time and time again are critical for success in STEM disciplines and careers. This lived reality for many African American youth is the direct result of long-standing disparities in access and opportunities, fueled by racial socialization and biased institutional structures. This pilot will empower youth to recognize these disparities and use science to provide solutions. One perilous societal disparity experienced in many predominately African American communities is the lack of access to fresh produce and healthy food. As a mechanism for potential resolution, this project will consider the utility of community gardens to address this important community need and as a strategy to engage youth in STEM content and skill development. While this notion is not novel to NSF, the intent to utilize an augmented reality (AR) storytelling platform for data collection and project experiences is innovative. This technology will also provide a space for participants to share their work with each other and their broader communities. To our knowledge, this pioneering approach has not been previously piloted in this context. In addition, the pilot will engage multiple youth serving community-based organizations such as park and recreation centers and faith-based organizations in this work, which is also innovative. This is significant, as youth serving community-based organizations are often play important role in the social, educational, and cultural lives of youth and their families in communities. These organizations are often at the heart of the community, figuratively and literally. If successful, this pilot could be transformative and provide a strong basis to support similar work in other communities.

Over the two-year project duration, eighty African American youth ages 11 -14 will participate in the year-long program, across three youth-serving, community-based organizations at four sites. They will be exposed to relevant agricultural, geological, engineering and technological content through a newly developed curriculum called "Cultivating My Curriculum." Community mentors and undergraduate role models will facilitate the instruction and hands-on experiences in the garden and with the AR platform. A capstone event will be a held for the participants and community to convene to learn more about the results of the pilot and share recommendations with community leaders for improving the disparities identified during the pilot. The research component will focus on: (a) the impact of the sociocultural theoretical framework grounding the work on youths' STEM identities, (b) the integration of the AR tool, and (c) mentorship. Formative and summative evaluation will take place through focus groups, surveys, journals, and youth storytelling. Ultimately, the project endeavors to advance the narrative that African Americans are scientists and that science can be used to improve the lives of African Americans and other groups challenged by structural and racial disparities.

This pilot study is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harrison Pinckney David Boyer Barry Garst Dilrukshi Thavarajah
resource evaluation Public Programs
In 2015, the Swinomish Indian Tribal Community (SITC) received a two-year NSF-AISL Pathways Grant (#1516742) entitled “Developing an Informal Environmental Health Education Model in Tribal Communities,” designed to develop a process model and curriculum for community-based environmental health outreach, grounded in cultural values and practices. The project deliverables included a curriculum and guiding document, intended to inform and inspire other tribal communities wishing to create a culture-based environmental or public health curriculum. SITC contracted the Lifelong Learning Group
DATE: