The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE:
-
TEAM MEMBERS:
Robert WesterveltCarol Lynn AlpertRay AshooriTina Brower-Thomas
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
resourceprojectProfessional Development, Conferences, and Networks
QuarkNet is a national program that partners high school science teachers and students with particle physicists working in experiments at the scientific frontier. These experiments are searching for answers to fundamental questions about the origin of mass, the dimensionality of spacetime and the nature of symmetries that govern physical processes. Among the experimental projects at the energy frontier with which QuarkNet is affiliated is the Large Hadron Collider, which is poised at the horizon of discovery. The LHC will come on line during the 5-years of this program. QuarkNet is led by a group of teachers, educators and physicists with many years of experience in professional development workshops and institutes, materials development and teacher research programs. The project consists of 52 centers at universities and research labs in 25 states and Puerto Rico. It is proposed that Quarknet be funded as a partnership among the ESIE program of EHR; the Office of Multidisciplinary Activities and the Elementary Particle Physics Program (Division of Physics), both within MPS; as well as the Division of High Energy Physics at DOE.
DATE:
-
TEAM MEMBERS:
Mitchell WayneRandal RuchtiDaniel Karmgard
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
The Clay Center for Arts and Sciences of West Virginia will create professional learning communities of teachers and after-school staff serving 7th grade students at seven partner schools using digital storytelling as a tool to explore energy-related topics impacting their communities. West Virginia's role as a leading coal producer and the impact of natural gas drilling served as strong influencing factors in the creation of this STEAM project, titled emPOWERed Stories. Students will create an exhibit that incorporates these digital stories. The results will inform the broader field on ways to better blend formal and informal education experiences to become more potent learning environments.
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
The University of Alaska Fairbanks will partner with the National Optical and Astronomy Observatory, the University of Alaska Museum of the North, and the University of Washington-Bothell to bring biomaterials, optics, photonics, and nanotechnology content, art infused experiences, and career awareness to art-interested girls. This full scale development project, Project STEAM, will explore the intersections between biology, physics, and art using advanced technologies at the nano to macro scale levels. Middle school girls from predominately underrepresented Alaskan Native, Native American (Tohono O'odham, Pascula Yaqui) and Hispanic groups, their families, teachers, and Girl Scout Troop Leaders in two site locations- Anchorage, Alaska and Tucson, Arizona will participate in the project. Centered on the theme "Colors of Nature," Project STEAM will engage girls in science activities designed to enhance STEM learning and visual-spatial skills. Using advanced technologies, approximately 240 girls enrolled in the Summer Academy over the project duration will work with women scientist mentors, teachers, and Girl Scout Troop Leaders to create artistic representations of natural objects observed at the nano and macro scale levels. Forty girls will participate in the Summer Academy in year one (20 girls per site- Alaska and Arizona). In consequent years, approximately180 girls will participate in the Academy (30 girls per site). Another 1,500 girls are expected to be reached through their Girl Scout Troop Leaders (n=15) who will be trained to deliver a modified version of the program using specialized curriculum kits. In addition, over 6,000 girls and their families are expected to attend Project STEAM Science Cafe events held at local informal science education institutions at each site during the academic year. In conjunction with the programmatic activities, a research investigation will be conducted to study the impact of the program on girls' science identity. Participant discourse, pre and post assessments, and observed engagement with the scientific and artistic ideas and tools presented will be examined and analyzed. A mixed methods approach will also be employed for the formative and summative evaluations, which will be conducted by The Goldstream Group. Ultimately, the project endeavors to increase STEM learning and interest through art, build capacity through professional development, advance the research base on girls' science identity and inspire and interest girls in STEM careers.
Native Americans exert sovereignty over vast amounts of United States land and water resources, yet are underrepresented in the disciplines that train our nation's future land and water resource managers. Native American resource managers must walk in two worlds, accommodating both traditional and modern methods that may come into conflict. Building on an existing, NSF-funded Manoomin Science Camp, the Walking Two Worlds (W2W) project will employ a systems view of resource management in considering a broad range of resource management issues affecting the region (including its lakes and wetlands, fisheries, forestry, wildlife, and air quality), with the goal of engaging the entire community in environmental and resource management issues of immediate relevance to the community. W2W will incorporate both Western science concerning the physical, chemical, and biological worlds, and traditional environmental knowledge, culture, language, and the judgment of elders. This holistic approach will not only facilitate effective resource management for the community, it will also serve as a 'hook' for engaging students and the community in STEM. A partnership of the Fond du Lac Band (of Lake Superior Chippewa) and the University of Minnesota (UMN) planned collaboratively with the community, W2W will focus on community-inspired, participatory science research projects related to resource management and environmental science. W2W will be facilitated by local teachers, with former participants as mentors, researchers and resource manages as mentors, and UMN faculty as lecturers. W2W recognizes the critical importance of strong STEM education for natural resource management. Using a mixed-methods approach to external evaluation, the project will build knowledge on the contributions of the W2W holistic, systemic approach and theme of community resource management. This will provide the foundation for a future development project that builds a community of place-based learning and community-inspired research projects.
This Advancing Informal Science Learning Pathways project, Using Technology to Research After Class (UTRAC), explores whether a combination of technology (e.g., iPad-enabled sensors, web-based inquiry-focused portal) and facilitated visits improves learning outcomes for rural and Native American elementary-age youth in after school programs. Expected outcomes include improved engagement, knowledge, skills, and attitudes toward science, technology, engineering, and math (STEM). Project goals include promoting STEM learning through science inquiry activities keyed to specific Next Generation Science Standards as well as improving how technology can be used to enhance learning outcomes in afterschool programs. The experimental design of this project - testing the effects of physical or virtual facilitation visits on learning outcomes - will lead to improvements in STEM learning outcomes among rural and underrepresented students. This project will employ several innovations in utilizing technology to teach STEM topics including: (i) hands-on, real-time, crowd sourced data collected by participants in their schoolyards; (ii) a pedagogic emphasis on communication of schoolyard data among and between participants; (iii) testing of motivational incentives; and (iv) partnerships between after school providers, preservice teachers, and university researchers as facilitators. The entire process will be modularized so that it can be modified in terms of place, STEM topic or student cohort. The topic focus of the project -- Life Under Snow -- is relevant to participating students, as Montana school playgrounds lie blanketed under snow for the majority of the school year; it includes elements of snow science, carbon cycle science, and a combination at the intersection of three recent literacy initiatives (e.g., Earth Science, Climate, or Energy). UTRAC will pilot and evaluate facilitated snow science/carbon cycle science activities that couple real-time schoolyard data with tools patterned after those available through WISE (Web-based Inquiry Science Environment; wise.berkeley.edu). Participants will collect and compare data with other youth participants, and researchers will use formative assessments to define interventions with potential to maximize student engagement and learning improvements among underserved youth. The project will advance understanding of informal education's potential to improve STEM engagement, knowledge, skills and attitudes by quantifying how - and to what extent - youth engage with emerging technologies iPad-enabled sensors, and crowdsourcing and visualization tools. The deliverables include a quantifying metric for learning outcomes, a training model for the iPad sensors and web application, an orientation kit, a social media portal, and database for the measurements.
This Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) project from the University of New Hampshire focuses on a "living bridge", which exemplifies the future of smart, sustainable, user-centered transportation infrastructure. Bridges deliver such a fundamental service to society that they are often taken for granted. Typically, bridges only stir the public's interest when they must unexpectedly be replaced at great cost, or, worse, fail. The Living Bridge project will create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy, by transforming the landmark Memorial Bridge--a vertical lift bridge over the tidal Piscataqua River, with pedestrian access connecting Portsmouth, New Hampshire to Kittery, Maine--into a living laboratory for researchers, engineers, scientists, and the community at large. The Living Bridge will engage innovators in sensor and renewable energy technology by creating an incubator platform on a working bridge, from which researchers can field test and evaluate the impact and effectiveness of emerging technologies. The Living Bridge will also serve as a community platform to educate citizens about innovations occurring at the site and in the region, and about how incorporating renewable energy into bridge design can lead to a sustainable transportation infrastructure with impact far beyond the region. Sustainable, smart bridges are key elements in developing a successful infrastructure system. To advance the state of smart service systems and clean energy conversion, this project team will design and deploy a structural and environmental monitoring system that provides information for bridge condition assessment, traffic management, and environmental stewardship; advances renewable energy technology application; and excites the general public about bridge innovations. This PFI:BIC project is enabled through partnerships between academic researchers with expertise in structural, mechanical and ocean engineering, sensing technology and social science; small businesses with expertise in instrumentation, data acquisition, tidal energy conversion; and state agencies with bridge design expertise. The Living Bridge technical areas are structural health monitoring, tidal energy conversion with fluid-structure interaction measurements, estuarine environmental monitoring, and outreach communication. Sensors will be used to calibrate a three-dimensional analytical structural finite element model of the bridge. The predicted structural response from this model will assess the measured structural response of the bridge as acceptable or not. Instruments installed on the turbine deployment platform will measure the spatio-temporal structure of the turbulent inflow and modified wake flow downstream of the turbine. Resulting data will include turbine performance and loads for use in fluid-structure interaction models. Deployed environmental sensors will measure estuarine water quality; wildlife deterrent sensors will deter fish from the turbine. Hydrophones and video cameras will be used before and during turbine deployment to monitor environmental changes due to turbine presence. Outreach efforts will make bridge data, history, and information about new systems accessible and understandable to the public and K-12 educators, facilitated by an information kiosk installed at the bridge. Public awareness will be assessed with survey methods used in the N.H. Granite State Poll. The lead institution is the University of New Hampshire (UNH) with its departments of Civil Engineering, Mechanical Engineering, and Sociology, and the Center for Ocean Engineering. Primary industrial partners are a large business, MacArtney Underwater Technology Group, Inc. (Houston, TX) and two small businesses Lite Enterprises, Inc. (Nashua, NH) and Eccosolutions, LLC (New Paltz, NY.) Broader context partners are New Hampshire Department of Transportation, NH Fish & Game Department, NH Port Authority, NH Coastal Program, City of Portsmouth (NH), Sustainable Portsmouth (nonprofit), Maine Department of Transportation; U.S. Coast Guard, Archer/Western (Canton, MA, large business), Parsons-Brinkerhoff (Manchester, NH, large business), UNH Tech Camp, UNH Infrastructure and Climate Network, UNH Leitzel Center for Mathematics, Science and Engineering Education, and Massachusetts Institute of Technology's Changing Places (a joint Architecture and Media Laboratory Consortium, in Cambridge, MA).
DATE:
-
TEAM MEMBERS:
Erin BellTat FuMartin WosnikKenneth BaldwinLawrence Hamilton
Effective communication of science to the public by scientists is a desired and sought after attribute. This project which is working with graduate and undergraduate students in Physics will determine what interventions are best in assessing communication and attitudinal capacities in this cadre. Further, the project will determine what strategies are best at remediation. Finally, the successes will be generalized with regard to interventions and remediation to other Physics programs across the country and perhaps to other disciplines in the STEM fields. There are a variety of factors that contribute to effective communications with public audiences. Some of those factors include audience characteristics and teacher/mentor capabilities. This project will ascertain the issues in the latter teacher/mentor capacities. They will assess the mentor's baseline skills regarding communication, teaching and emergent attitudes. These are considered separately as each contributes uniquely to the effectiveness of communication. In the communications skills section, the objective will be to determine initially if the mentors are using any one of the following models: deficit, meaning the mentor is the expert and the participants are not informed; dialogue, where there is more back and forth between mentor and participant; and finally participatory interactions, where there is full integration of participant and mentor ideas. Once the baseline is established, the investigators will introduce mechanisms for remedial intervention with the student mentors to determine if and what types of changes can be made to improve communication directed toward public understanding of STEM concepts and ideas. Finally, the researchers will seek to determine if these interventions have affects beyond the immediate challenges such as career discussions, participation in classes and/or written products.