The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
A survey we carried out in upper secondary schools showed that the majority of the students consider physics as an important resource, yet as essentially connected to technology in strict terms, and not contributing “culture”, being too difficult a subject. Its appreciation tends to fade as their education progresses through the grades. The search for physics communication methods to increase interest and motivation among students prompted the Department of Physics at the University of Milan to establish the Laboratory of ScienzATeatro (SAT) in 2004. Up to May 2010, SAT staged three shows and
DATE:
TEAM MEMBERS:
Marina CarpinetiMichela CavinatoMarco GilibertiNicola LudwigLaura Perini
resourceprojectProfessional Development, Conferences, and Networks
QuarkNet is a national program that partners high school science teachers and students with particle physicists working in experiments at the scientific frontier. These experiments are searching for answers to fundamental questions about the origin of mass, the dimensionality of spacetime and the nature of symmetries that govern physical processes. Among the experimental projects at the energy frontier with which QuarkNet is affiliated is the Large Hadron Collider, which is poised at the horizon of discovery. The LHC will come on line during the 5-years of this program. QuarkNet is led by a group of teachers, educators and physicists with many years of experience in professional development workshops and institutes, materials development and teacher research programs. The project consists of 52 centers at universities and research labs in 25 states and Puerto Rico. It is proposed that Quarknet be funded as a partnership among the ESIE program of EHR; the Office of Multidisciplinary Activities and the Elementary Particle Physics Program (Division of Physics), both within MPS; as well as the Division of High Energy Physics at DOE.
DATE:
-
TEAM MEMBERS:
Mitchell WayneRandal RuchtiDaniel Karmgard
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
Explore the Galaxy involved teens from Chicago Public Schools (CPS) in planning for an upcoming exhibition and its interpretation. The Adler Planetarium worked with teens from several CPS high schools, with a special focus on the CPS Air Force Academy High School (AFAHS). The goals were to develop institutional partnerships and capacity for a teen docent program as well as to do formative evaluation for an upcoming exhibition. All goals were met. The Adler is now in year 4 of a comprehensive partnership with the AFAHS involving students from all four grades in field trips, activities, after-school clubs and Adler internships. The AFAHS students are now participants in an active teen internship program that places students in different Adler professional departments every summer. As well the Adler employs volunteer and paid teen interpreters on school year weekends. These relationships and programs depend on the foundations laid through the work of this grant. In the realm of exhibition design, teens also interviewed visitors about prior conceptions and interest in several areas related to cosmology including how gravity works and the size and age of the universe. Their comments influenced design of, The Universe a Walk through Space and Time, which opened in summer of 2012.
Curious Scientific Investigators (CSI): Flight Adventures immerses children and families in science, technology, engineering, and math (STEM) disciplines. Launched in February 2012, the project supports NASA’s Aeronautics Research Mission Directorate (ARMD), focusing on “innovative ideas to convey the fundamentals of flight, flight technology, and NASA’s role in aeronautics.” The project’s audience includes youth ages 6-18 and the Museum’s more than 1 million annual visitors of all ages. The project’s lead agency, The Children’s Museum of Indianapolis (Museum), developed and implemented the project in Indianapolis in partnership with the Academy of Model Aeronautics and NASA Dryden Flight Research Center. The project’s goals focus on inspiring children and families to develop an interest in STEM concepts and learn about NASA’s role in science and aeronautics research and the evolution of flight, and on engaging and educating them through inquiry-based programs that facilitate understanding of STEM concepts and knowledge and NASA’s contributions to flight. Centered on an original Multimedia Planetarium Show on flight, Flight Adventures, the Museum designed several components, all of which complement the show and the messages it conveys. Among these components are an exhibit area composed of a movable wind tunnel, a display of models, low- and high-tech interactives; a Unit of Study; a TV show, Wings Over Indiana; a website; and a variety of educational and family programs.
DATE:
-
TEAM MEMBERS:
Jennifer Pace-RobinsonGordon Schimmel
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE:
-
TEAM MEMBERS:
Southwestern CollegeDavid BrownDavid Hecht
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
The EDC Center for Children and Technology (CCT), a nonprofit international research organization, conducted the formative evaluation of the first year's implementation of the Be A Scientist! (BAS) project. The goal of this five-year afterschool family science program project is to provide quality science and engineering courses to underserved families in New York City and Los Angeles. It targeted underserved first graders and their families in the Spring 2010. Guiding by formative research questions (e.g., X) and using multi-method research approach (e.g., X), CCT researchers uncovered
The proposed CAREER study uses a comprehensive mixed-methods design to develop measures of motivational beliefs and family supports for Spanish and English speaking Mexican-origin youth in high school physical science. The research examines a three-part model which may provide a deeper understanding of how Mexican families support youth through their general education strategies, beliefs about physical science, and science specific behaviors. This approach incorporates motivation and ecodevelopmental theories while pursuing an innovative line of research that examines how the contributions of older siblings and relatives complement or supplement parental support. The study has four aims which are to (1) to develop reliable, valid measures of Mexican-origin adolescent motivational beliefs and family supports in relation to high school chemistry and physics, (2) to test whether family supports predict motivational beliefs and course enrollment, (3) to test how indicators in Aim 2 vary based on gender, culture, English language skills and relationship quality, and (4) to examine how family supports strengthen or weaken the relationship between school-based interactions (teachers and peer support) and the pursuit of physical science studies. Spanish and English-speaking Mexican-origin youth will participate in focus groups to inform the development of a survey instrument which will be used in a statistical measurement equivalence study of 300 high school students in fulfillment of Aim 1. One hundred and fifty Mexican high school students and their families will participate in a longitudinal study while students progress through grades 9-12 to examine Aims 2- 4. Data to be collected includes information on science coursework, adolescent motivational beliefs, supports by mothers and older youth in the family, and family interactions. All materials will be in English and Spanish. The educational and research integration plan uses a three pronged approach which includes mentoring of doctoral students, teacher outreach, and the evaluation of the ASU Biodesign high school summer internship program using measures resulting from the research. It is anticipated that the study findings will provide research-based solutions to some of the specific behaviors that influence youth motivation in physical sciences. Specifically, the study will identify youth that might be most affected by an intervention and the age of maximum benefit, as well as valid, reliable measures of youths' motivation that can used in interventions to measure outcomes. The study will also identify family behaviors that may be influenced, including education strategies for school preparation, beliefs about physical science, and sciece-specific strategies such as engaging in science activities outside school. The findings will be broadly disseminated to science teachers, scholars, and families of Mexican-origin youth. This multi-tiered approach will advance current scholarship and practice concerning Mexican-origin adolescents' pursuit of physical science.
Universal BEATS developed by The Music Research Institute at the University of North Carolina at Greensboro, North Carolina State University's Department of Mathematics, Science, and Technology Education, and NCSU's Kenan Institute for Engineering, Technology, and Science improved elementary education by developing instructional resources for 2nd-5th grade students that infuse cutting-edge content from the emerging field of biomusic into standards-based elementary science and music curricula. The approach used the musical sounds of nature to help students learn concepts in biology, physical science, and anthropology.
DATE:
-
TEAM MEMBERS:
patricia grayEric WiebeDavid TeachoutSarah Carrier