RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will develop and test intergenerational science media resources for parents that are participating in adult education programs and their young children. The materials will build on the research-based and successful children's television program, Fetch with Ruff Ruffman. The target audience includes parents enrolled in adult education programs who lack a high school diploma or are in English as a Second Language classes. These resources will support parents' engagement in science activities with their children both in the adult education settings as well as at home. Adult and family educators will receive professional development resources and training to support their integration of the parent/child activities. Project partners include the National Center for Families Learning, Kentucky Educational Television, and Alabama Public Television,
The goals of the Ruff Family Science project are to: (1) investigate adult education settings that feature an intergenerational learning model, in order to learn about the unique characteristics of adults and families who are enrolled in these programs; (2) examine the institutional circumstances and educator practices that support joint parent/child engagement in science; (3) iteratively develop new prototype resources meet the priorities and needs of families and educators involved in intergenerational education settings; and (4) develop the knowledge needed to create a fuller set of materials in the future that will motivate and support diverse, low-income parents to investigate science with their children. The research strategy is comprised of three main components: Phase 1: Needs Assessment: Determine key motivations and behaviors common to adult education students who are also parents; surface obstacles and assets inherent in these parents' current practices; and examine the needs and available resources for supplementing parents' current engagement in family science learning. Phase 2: Prototype Development: Iteratively develop two prototype Activity Sets, along with related educator supports and training materials, designed to promote joint parent-child engagement with English and Spanish-speaking families around physical science concepts. Phase 3: Prototype Field Test: Test how the two refined prototype Activity Sets work in different educational settings (adult education, parent education, and parent and child together time). Explore factors that support or impede effective implementation. Sources of data for the study include observations of adult and parent education classes using an expert interview protocol, focus groups, adult and family educator interviews, and parent surveys.
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater program and hands-on group activities. Multimedia Research, an independent evaluation firm, implemented a summative evaluation with low income, inner-city
Purpose: This project team will develop and test Zaption, a mobile and desktop platform designed to support educators in effectively and efficiently utilizing video (e.g., from YouTube, Vimeo, or their own desktop) as an interactive teaching and learning object. Personalized learning devices (e.g., smartphones, tablets) populated with video content provide opportunities for students to access educationally-meaningful content anywhere and anytime. Yet, video has yet to realize its potential as a learning tool in or out of the classroom. One reason for this is that watching video can be a passive experience for students, whereas learning requires active engagement. A second reason is that even if students are actively engaged while watching a video, there is no easy way to elicit student responses to a video. And finally, there is no easy way to feed student responses to teachers as formative assessment data to guide subsequent instruction.
Project Activities: During Phase I, (completed in 2014), the team expanded a pre-existing prototype by building a mobile app to enable anytime use and increase its functionality for teachers. At the end of Phase I, pilot research with 150 students in 7 classrooms demonstrated that the prototype operated as intended, teachers were able to integrate the videos within instructional practice, and students found the mobile app helpful and engaging. In Phase II, the team will add additional components to the prototype and will develop content-specific modules for use in high school physics classes. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the Zaption for supporting student's physics learning. The study will include 32 Grade 10 physics classrooms, half of whom will be randomly assigned to use Zaption and half of whom will follow business as usual procedures. Analyses will compare pre-and-post scores of student's physics learning.
Product: Zaption will be a mobile and web-based platform to support the use of any video (e.g., from YouTube, Vimeo, or their own desktop) as a teaching and learning tool. Zaption will include an authoring engine where users can find and select video clips and easily insert interactive elements such as questions, discussions, and annotations into the videos. Users will then publish videos directly on Zaption's website, or on any learning management system or classroom website. Students will be able to view videos as homework or in class, respond individually to the questions and prompts, and get feedback on their responses. Teachers will use Zaption Analytics to receive immediate and actionable data showing whether students actually watched and engaged with a video, and how students responded to the questions and prompts.
A short outline of the evolution of communications at CERN since 1993 and the parallel growth of the need both for professional communications and, at the same time, the need for training in more and more complex competencies for the new profession.
For decades, particle physicists have been using open access archives of preprints, i.e. research papers shared before the submission to peer reviewed journals. With the shift to digital archives, this model has proved to be attractive to other disciplines: but can it be exported? In particle physics, archives do not only represent the medium of choice for the circulation of scientific knowledge, but they are central places to build a sense of belonging and to define one's role within the community.
STEM Pathways is a collaboration between five Minnesota informal STEM (science, technology, engineering, and mathematics) education organizations—The Bakken Museum, Bell Museum of Natural History, Minnesota Zoo, STARBASE Minnesota, and The Works Museum—working with Minneapolis Public Schools (MPS) and advised by the Minnesota Department of Education. STEM Pathways (logo shown in Figure 1) aims to provide a deliberate and connected series of meaningful in-school and out-of-school STEM learning experiences to strengthen outcomes for students, build the foundation for a local ecosystem of STEM
Dialogical models in science communication produce effective and satisfactory experiences, also when hard sciences (like astrophysics or cosmology) are concerned. But those efforts to reach the public can be of modest impact since the public is no longer (or not sufficiently) interested in science. The reason of this lack of interest is not that science is an alien topic, but that contemporary science and technology have ceased to offer a convincing model for the human progress.
The idea to link European citizenship and science education is surely new and uncommon in Poland, but we think, as SEDEC project, that can enrich both the panorama of science popularization outside and inside school system. I checked carefully curricula for every stage of school education looking for the topics concerning the developing of the European citizenship. I found that they are usually connected to the history, geography and some activities developing of the knowledge about generally defined citizenship. The spare topics connected directly to the science are present especially in
I still remember very clearly my first encounter with peer review: I was a Ph. D. student in physics and I had written my first paper, submitted it to a journal and - after what seemed to me a very long time - received a reply with the request for few changes and corrections I was supposed to include in my paper before it could be considered for publication. These very simple steps: the writing up of some original research results in a paper, its submission to a journal and the process of the work being read and judged by someone reputed to be an expert in the field is what we call peer review
Enrico Fermi's work gave birth to a real cultural revolution in the Italian scientific scenario. His scientific studies concerned almost every field in physics and had far-reaching effects of which virtually everybody, above all in Italy, is still taking advantage. Two important "by-products" of Fermi's ideas and initiatives will be here taken into consideration: the new way of carrying out research and communicating science invented by Fermi and his group and his publications for the general public, which often stood for high examples of scientific popularisation. Then the focus will shift on
According to Einstein’s renowned declaration, for those who believe in physics – or, more precisely, in its capability to offer a “scientific” representation of the world – the distinction between present, past and future is just “an illusion, though obstinate”. If we consider an effective analogy by Mauro Dorato, we can state that those who agree with the famous German scientist will recognize in the present, past and future a relationship very similar to that between “here” and “somewhere else” – in other words, the present is just a located moment and has no privileged status. In other