Skip to main content

Community Repository Search Results

resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
DATE: -
TEAM MEMBERS: Emily Edwards Curtis Suplee
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource project Media and Technology
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
DATE: -
TEAM MEMBERS: Dean Cristol Christopher Andersen Lynn Sametz
resource evaluation Media and Technology
In 2012, Concord Evaluation Group (CEG) conducted an evaluation of the impact of Peep and the Big Wide World (Peep) resources on Spanish-speaking families with preschool-aged children. The three-pronged evaluation included a National Family Study in which 112 Spanish-speaking families who used the Peep resources were compared to Spanish-speaking families who did not use the Peep resources. It also included an In-Depth Family Study -- an experiment conducted in the metro Boston area in which 36 Spanish-speaking families who used the Peep resources were compared to Spanish-speaking families who
DATE:
TEAM MEMBERS: Christine Paulsen WGBH
resource project Media and Technology
SPYHOUNDS is a new transmedia learning experience for 6- to10-year old children. SPYHOUNDS represents an effort to extend the value of the successful TV series FETCH! with Ruff Ruffman by moving to a new media platform and revamping the storyline. The popular character Ruff Ruffman becomes a super spy through top-secret missions. Ruff needs help (both on and offline) from kids at home, who become the spyhounds. Each mission is designed to have kids watch new animation, complete online activities designed to promote STEM exploration, and participate in offline activities that require kids to investigate real world phenomena. This Pathways grant provides development support to fund a pilot phase of the project. The STEM content in the pilot phase will focus on physical science. Deliverables will include 3 x 60-second mini animated episodes, 3 interactive games rolling out over a 6-week period, 6 x 60-second audio updates from Ruff, daily in-character blog updates as Ruff plays out the mission, offline decoding activities supported by video clips, daily social media updates through Facebook and Twitter, editorial staff reviewing/posting user generated content, and Web-based survey data. WGBH and Concord Evaluation Group will conduct formative and summative evaluation using a wide array of success metric and analytics. While the project design is rooted in an evidence-based curriculum and lessons learned from prior work, the Spyhounds concept offers a new educational media model. The pilot phase supported by this grant will help inform the future development of a year-long effort. The project's goal is help audience members develop understanding of science and math concepts, enhance problem-solving skills, and expand their understanding of how science and math are used in the real world. Spyhounds has potential to contribute to theory development, especially as it evaluates how young audiences take information learned online and apply it in the real world.
DATE: -
TEAM MEMBERS: Kate Taylor Christine Paulsen
resource project Media and Technology
Radio Lab will produce 20 hour-long interdisciplinary science programs and 30 shorter features to be aired on NPR news magazine programs on a wide range of core STEM topics exploring how research is done as well as what the scientific results mean to the listener. The programs are co-hosted by Robert Krulwich, science reporter for NPR, and Jared Abumrad, WNYC radio producer and music composer. The programs are using a new, unorthodox format with music, live sounds and conversations between the hosts designed to appeal to young adult listeners who previously thought they did not like science. Each episode is crafted around a scientific finding and aims to connect the scientific inquiry to philosophical and universal implications. Program topics will include biology and neuroscience as well as physics, genetics, chemistry, math and engineering. The program carriage goal is to have the hour-long programs airing on 100 stations reaching three to four million listeners by the end of the project. The shorter segments will be distributed by NPR in its regular news magazine programs. Programs will also be podcast on NPR and WNYC's web sites, as well as through iTunes. The project will also train NPR science reporters on this new approach to science news content.
DATE: -
TEAM MEMBERS: Ellen Horne Jad Abumrad Robert Krulwich Barbara Flagg
resource project Media and Technology
The Exploratorium will develop "The Electronic Guidebook: Extending Museum Experience Using Networked Handheld Computers." Through this project, the Exploratorium and the Concord Consortium will investigate the use of new technologies to enhance the learning experience of science museum visitors. The exponentially increasing availability of portable personal computing devices provides an opportunity for science museums to develop new ways for visitors to experiment and interact with exhibits. The partners will design and prototype a museum-based "Electronic Guidebook" for visitors. Twenty-five Exploratorium exhibits will be connected to a museum network and handheld portable computers through infrared connections. The target audiences for this project are the general public (adults and families) and children in the K-12 age range. The primary disciplinary focus is physics, with a secondary focus on mathematics.
DATE: -
TEAM MEMBERS: Robert Semper Robert Tinker
resource research Media and Technology
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
DATE:
TEAM MEMBERS: Utah State University Victor Lee