This paper describes evidence suggesting that science curiosity counteracts politically biased information processing. This finding is in tension with two bodies of research. The first casts doubt on the existence of “curiosity” as a measurable disposition. The other suggests that individual differences in cognition related to science comprehension - of which science curiosity, if it exists, would presumably be one - do not mitigate politically biased information processing but instead aggravate it. The paper describes the scale-development strategy employed to overcome the problems associated
DATE:
TEAM MEMBERS:
Dan KahanAsheley LandrumKatie CarpenterLaura HelftKathleen Hall Jamieson
Libraries across the country have been reimagining their community role and leveraging their resources and public trust to strengthen community-based learning and foster critical thinking, problem solving, and engagement in STEM. What started some years ago as independent experiments has become a national movement. The Space Science Institute's National Center for Interactive Learning (NCIL), in partnership with the Lunar and Planetary Institute (LPI), received funding from the National Science Foundation for the first-ever Public Libraries & STEM conference, at the Sheraton Denver Downtown
Sustainability science, as described by the PNAS website, is “…an emerging field of research dealing with the interactions between natural and social systems, and with how those interactions affect the challenge of sustainability: meeting the needs of present and future generations while substantially reducing poverty and conserving the planet's life support systems.” Over the past 7 y, PNAS has published over 300 papers in its unique section on sustainability science and has received and reviewed submissions for many hundreds more. What kind of a science is sustainability science?
The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these
In a sustainable world, human needs would be met without chronic harm to the environment and without sacrificing the ability of future generations to meet their needs. Addressing the grand challenge of sustainability, the U.S. National Science Foundation (NSF) has developed a coordinated research and education framework, called the Science, Engineering, and Education for Sustainability (SEES) portfolio (http://www.nsf.gov/sees). The growing family of SEES activities, currently consisting of 11 programs, represents a major interdisciplinary investment by NSF that reflects the following topical
DATE:
TEAM MEMBERS:
Tim KilleenBen Van Der PluumMarge Cavanaugh
Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an
DATE:
TEAM MEMBERS:
National Academies of Sciences, Engineering, and Medicine
This paper discusses the concepts and practice of museum conservation, and the role of conservation in preserving both material and significance of objects. It explores the conservation of science and industry collections and the fact that the significance of many of these objects lies in their operation. It considers alternatives to operating original objects but emphasises the value of experiencing the real thing, and argues that visitors should be given greater physical access to museum objects, including being enabled to handle and work functioning objects. It finishes by calling for
Framing ‘science and society’ as a conflict has diverted us from more important problems. Our economic environment urges the commercialisation and social acceptance of new technologies, and science communicators and their publics contribute work to these ends. These activities neglect existing, uncontroversial technologies that, in a collaboration between responsible scientists and their publics, could be deployed to address global problems.
How did industrial museums cross the Atlantic? When the first American museums of science and industry were created in the 1920s, they looked to Europe in order to import what was seen at that time as a burgeoning cultural institution. In this article, I look at this process of appropriation through an analysis of the changing perceptions of European industrial museums as expressed in the reports, surveys and books written by the curators, directors and trustees of the New York Museum of Science and Industry. I will pay particular attention to the 1927 film Museums of the New Age, documenting
Factors that influence reception and use of information are represented in this koru model of science communication using the metaphor of a growing plant. Identity is central to this model, determining whether an individual attends to information, how it is used and whether access to it results in increased awareness, knowledge or understanding, changed attitudes or behaviour. In this koru model, facts are represented as nutrients in the soil; the matrix influences their availability. Communication involves reorganisation of facts into information, available via channels represented as roots
Since its completion in 1937, the Golden Gate Bridge has become one of the world’s most recognized landmarks as both an iconic public works accomplishment and a popular tourist destination. In 2008, the National Science Foundation (NSF) awarded a $3 million grant to the Golden Gate Bridge Highway & Transportation District to leverage this status in developing informal education resources to interpret the science, engineering and history of the bridge. Through this initiative the Golden Gate Bridge would become a model for other public works venues for providing informal science education and
This summative evaluation report details the Broad Implementation of the Living Laboratory model--an initiative to promote partnership between museums and cognitive science researchers in order to promote professional learning and involve the public in scientific research. The evaluation investigated the extent of the dissemination effort’s depth, spread, sustainability, and shift in ownership, based on Coburn’s criteria for scale-up (2003). Evaluators collected data from surveys, interviews, focus groups, document review, and observations. Findings about depth suggest that adopters fully