Skip to main content

Community Repository Search Results

resource project K-12 Programs
Arizona State University's Ira A. Fulton Schools of Engineering with the Maricopa County Community Colleges District and K-12 school districts along with industry partners, Honeywell, Intel, and Texas Instruments, and the Helios Education Foundation will implement an NSF Design and Development Launch Pilot to address the broadening participation objectives of enhancing entry and persistence of underrepresented groups in engineering. This alliance will identify and develop effective mechanisms to impact entry and persistence in engineering at scale and to expand the effort for the region, serving as a model for Arizona and other universities nationally. Diversity is often seen as a valuable commodity for fostering innovation and creativity in engineering, and extant theoretical and empirical literature provides evidence of the importance a diversified engineering workforce can have to spark scientific and technological innovation to solve complex problems. Nationally, there is a consistent shortage of available diverse engineers and scientists, which is believed to compromise the country's ability to sustain its leadership position as a global force. This project will create engineering pathways for underrepresented groups and identify and develop effective mechanisms that impact these students' entry and persistence in engineering.

A total of 500 high school students, 100 2-year college students, and 200 four-year college students will participate in the project. The research measures will focus on students' academic/career awareness and interest in engineering and the degree to which students develop a strong identity and affinity for engineering. It is expected that the alliance affiliates will develop into adaptive systems that respond to needs of first-generation students at various pathway junctures. This project has the potential to transform educational experiences and support systems for first-generation students.
DATE: -
TEAM MEMBERS: Kyle Squires Roberta Anslow-Hammond Maria Reyes James Collofello Tirupalavanam Ganesh
resource project Professional Development, Conferences, and Networks
The University of Maine will address the grand challenge of increasing Native American participation in the science,technology, engineering and mathematics (STEM) enterprise in an NSF INCLUDES Design and Development Launch Pilot project addressing culturally relevant pedagogy, incorporating Community Elders, Cultural Knowledge Keepers, and mainstream secondary and higher education institutions in the development of STEM pedagogy that can be replicated to other underrepresented and underserved populations. Partners in the effort include the Wabanaki Youth in Science program (WaYS)(a non-profit organization), Salish Kootenai College (a Tribal College), Massachusetts Institute of Technology (a research university), the National Indian Education Association (a non-profit membership organization) and the current NSF INCLUDES Design and Development Launch Pilot project at the University of Maine (the Stormwater Research Management Team (SMART)). This NSF INCLUDES partnership provides students with evidence-based STEM activities involving culturally relevant internships, mentoring, STEM professional development activities and other support. Non-native students will reciprocally participate in Native American learning environments.

The foundation for the project's activities is based on the WaYS program in science education that incorporates Traditional Ecological Knowledge (TEK). The goals of the project are to: 1) create and integrate curriculum that embraces TEK and western science as equal partners; 2)develop and implement protocols to incorporate a continued mentorship program for WaYS and STREAM engineering students; 3)develop a framework to bridge the gap between high school and college; and 4) foster collaboration among Community Elders, Cultural Knowledge Keepers and University of Maine faculty in a model that could be transferred to other communities. Internal and external evaluation activities will add to the scholarly literature on educating Native Americans and non-native students in STEM disciplines. Dissemination of project results will include published peer-reviewed journal articles on newly developed pedagogy and conference presentations at the American Indian Science and Engineering (AISES) national conference, the National Diversity in STEM Conference, National Science Teachers Association, AAAS, ASEE and the National NSF INCLUDES Network.
DATE: -
TEAM MEMBERS: Darren Ranco John Daigle Mindy Crandall Shaleen Jain
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Higher Education Programs
The University of New Hampshire (UNH) NSF INCLUDES Design and Development Launch Pilot project is a collaborative effort with the Community College System of New Hampshire, Advanced Manufacturing (AM) businesses, NH Economic Development, and the University of New Hampshire to address workforce development in the Advanced Manufacturing sector in the state. The Advanced Manufacturing Program (AMP) uses a framework built on the Collective Impact collaboration model that enables AMP partners to innovate, plan, and implement strategies that significantly increase NH's community colleges (CC) as a source for future workers and leaders in AM.

Specifically, this proposal addresses the pressing need for increasing numbers of AM workers through strategies designed to increase the retention of low socioeconomic status (LSES) students in CC STEM degree programs. AMP coordinates four key implementation strategies: 1) Co-requisite remediation within mathematics and quantitative reasoning; 2) Guided Pathways mentorship with "high touch" advising and student guidance resources that combines clearly defined academic pathways leading to 4-year college transfer and job placement; 3) paid work-based learning (WBL) experiences in industry and academic research; and 4) mentor inclusiveness training to prepare the workplace and academic settings to receive LSES students into a supportive climate. Successfully coordinating these four components through the process of Collective Impact collaboration will lead to a flexible and integrated AM workforce pipeline that serves CC AM students, AM industry partners, and the state as a whole. Findings will be disseminated to academic, business, and government stakeholders in NH, the region, and nationally to inform and improve broadening participation initiatives.
DATE: -
TEAM MEMBERS: Palligarnai Vasudevan Stephen Hale Brad Kinsey Leslie Barber Melissa Aikens
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Professional Development, Conferences, and Networks
This is a project to offer the Forum on Inclusive STEMM Entrepreneurship (FISE), a novel effort to broaden the participation of underrepresented minority women in STEMM entrepreneurship and to enhance the diversity of the science and engineering workforce. Through a convening of educators, entrepreneurs, aspiring entrepreneurs, industry leaders, investors and policy experts, entrepreneurial education thought leaders, and intersectionality scholars the PI proposes to use this conference as a platform for building capacity in the preparation and development of future entrepreneurs from underrepresented groups. The PI also seeks to contribute to the emerging field of research that bridges tech entrepreneurship and education policy.

The proposed forum has the potential to advance knowledge in the field of entrepreneurship education and engineering education. Given the dearth of research-based interventions to broaden participation in tech entrepreneurship, this conference offers an opportunity for participants to contribute to the leading edge of research and interventions in this field.

The convening and associated activities will leverage the social capital of knowledgeable experts in the academy and industry, investors, entrepreneurs and aspiring entrepreneurs to address critical needs of the nation that relate to enhanced global competitiveness, an improved national economy, and the participation of underrepresented cohorts in entrepreneurship and commercialization.
DATE: -
TEAM MEMBERS: Gilda Barabino
resource project Professional Development, Conferences, and Networks
The American Association for the Advancement of Science (AAAS) and the National Science Foundation (NSF) will continue its collaboration in providing to early- and mid-career scientists and engineers experiential professional development and public service fellowships via the AAAS Science and Technology Fellowship Program. Consistent with the immersion model adopted by AAAS, Fellows at NSF will be selected annually through a competitive process and placed in organizations throughout the Foundation. Fellows will work with NSF staff on a broad range of activities in order to gain insight into how national science and technology policy goals are translated into and reflected by NSF's mission and strategic goals and how and by whom national science and technology policy is driven, shaped and prioritized. NSF fellowship assignments are designed to: educate and expose Fellows to NSF programmatic planning, development and oversight activities in all fields of fundamental research via hands-on engagement; utilize the Fellows' expertise on projects that apprise NSF officials in areas of mutual interest to the Fellow and the host organization; and provide developmental opportunities to inform future career decisions. The program includes an orientation on executive branch and congressional operations, as well as a year-long suite of knowledge- and skill-building seminars involving science, technology and public policy within the federal as well as NSF contexts.

In the long-term, the AAAS Fellowship program seeks to build leadership capacity for a strong national science and engineering enterprise. Upon completion of the Fellowship, Fellows will have gained: a broader understanding and increased insights about the development and execution of federal-level science, technology, engineering and mathematics policies and initiatives as well as how policy and science intersect; enhanced skills in communicating science to support policy development; and a greater capacity to serve more effectively in future leadership roles in diverse environments, including public and policy arenas, academia and the private sector. The ultimate outcome of the Fellowship program experience -- policy savvy science and engineer leaders who understand government and policymaking and are well-trained to develop and execute solutions to address the nation's challenges.
DATE: -
TEAM MEMBERS: Olga Francois Cynthia Robinson
resource evaluation Afterschool Programs
The Society for Science and the Public’s Advocate Grant Program provides selected Advocates with funding, resources, and information. Advocates include classroom teachers, school and district administrators, university professors, and informal science educators in community-based programs. The role of the Advocate is to support three or more underserved middle or high school students in the process of advancing from conducting a scientific research or engineering design project to entering a scientific competition. Advocates receive a stipend of $3,000; opportunities to meet and interact with
DATE:
resource project Public Programs
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Ida Rose Florez
resource research Professional Development, Conferences, and Networks
During the preparation of the 2010 Science & Engineering Indicators, there arose a concern about measures of public knowledge of science, and how well they capture public knowledge for Chapter Seven of the Indicators. A workshop at NSF in October 2010 concluded that the process of measuring and reporting public knowledge of science should start with the question of what knowledge a person in the public needs, whether for civic engagement with science and science policy, or for making individual decisions about one’s life or health, or for feeding one’s curiosity about science. This starting
DATE:
TEAM MEMBERS: John Besley Meg Blanchard Mark Brown Elaine Howard Ecklund Margaret Glass Tom Guterbock A. Eamonn Kelly Bruce Lewenstein Chris Toumey Debbie Rexrode Colin Townsend
resource research Media and Technology
Englehard et al provide a wide-ranging look at synthetic biology, from discussion of how one might classify different synthetic approaches to consideration of risk and ethical issues. The chapter on public engagement considers why synthetic biology seems to sit below the public radar.
DATE:
TEAM MEMBERS: Emma Weitkamp
resource project Public Programs
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.

The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE: -
TEAM MEMBERS: Steven Stochaj Patricia Sullivan Luis Vazquez