There is an increasing recognition globally of the role to be played by community science –scientific research and monitoring driven and controlled by local communities, and characterized by place-based knowledge, social learning, collective action and empowerment. In particular, community science can support social-ecological system transformation, and help in achieving better ‘fit’ between ecological systems and governance, at local and higher levels of decision making. This paper draws on three examples of communities as central actors in the process of knowledge co-production to present a
DATE:
TEAM MEMBERS:
Anthony CharlesLaura LoucksFikret BerkesDerek Armitage
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.
This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
With the rapid development of technologies for exposure monitoring and data analysis, opportunities for utilizing citizen science and community-engaged research approaches in advancing environmental health research are ever increasing. On December 8-9, 2016, the Research Triangle Environmental Health Collaborative (Collaborative) held its 9th Summit, Community Engaged Research and Citizen Science Summit: Advancing Environmental Public Health to Meet the Needs of Our Communities in Research Triangle Park, NC. The timing of this particular Summit was fortuitous as it dovetailed with the
DATE:
TEAM MEMBERS:
Research Triangle Environmental Health CollaborativeMadelyn HuangKimberly Thigpen Tart
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE:
-
TEAM MEMBERS:
Julia ParrishMarco HatchSelina Heppell
The rapid growth of the natural gas extraction industry in Pennsylvania and neighboring states has stirred concerned citizens to seek ways to collect data on water quality impacts from the extraction activities. As a response to requests from community members, the Alliance for Aquatic Resource Monitoring (ALLARM) developed a volunteer-friendly protocol in 2010 for early detection and reporting of surface water contamination by shale gas extraction activities in small streams. To date, ALLARM has trained more than 2,000 volunteers in Pennsylvania, New York, and West Virginia to monitor water
The success of citizen science in producing important and unique data is attracting interest from scientists and resource managers. Nonetheless, questions remain about the credibility of citizen science data. Citizen science programs desire to meet the same standards of credibility as academic science, but they usually work within a different context, for example, training and managing significant numbers of volunteers with limited resources. We surveyed the credibility-building strategies of 30 citizen science programs that monitor environmental aspects of the California coast. We identified
Despite the rapid expansion of citizen-based monitoring, data from these programs remain underutilized by natural resource managers, perhaps due to quality and comparability issues. We present the Bosque Ecosystem Monitoring Program as a case study of an initiative successfully meeting long-term monitoring needs of federal, state, tribal, and local natural resource managers, and informing public policy. To maximize potential for partnerships with managers, we recommend the creation of a five-year plan including scientific goals and financial solvency strategies prior to establishing a citizen
DATE:
TEAM MEMBERS:
Rowan ConverseDaniel ShawKim EichhorstMay Leinhart
Community-based water monitoring (CBWM) provides essential baseline information on watershed health and engages the public in science, but those involved often encounter barriers to informing environmental management. We conducted qualitative interviews with watershed group coordinators and government counterparts from four CBWM organizations to explore instances where CBWM successfully influenced governmental decision-making. Our findings show that the level of rigor for quality standards, inclusion of volunteers, available resources, and desired goals are important considerations when
DATE:
TEAM MEMBERS:
Amy Buckland-NicksHeather CastledenCatherine Conrad
Determined to learn the extent to which a local contaminated site was impacting community health, the Native American community of Akwesasne reached out to a research university, eventually partnering on the first large-scale environmental health community based participatory research project (CBPR). Based on interviews with scientists, community fieldworkers, and study participants, this article examines the ways in which collaborating on these studies was beneficial for all parties — especially in the context of citizen science goals of education and capacity building — as well as the
The validity of citizen science conducted by community activists is often questioned because of the overt values that activists bring to their investigations. But value judgments are a necessary part of even the best academic science, and scientists whose findings suggest the need for policy action can learn from the example of citizen scientists. Communicating clearly about value judgments in science would give the public a better basis for distinguishing between responsible and irresponsible research on controversial issues.