This essay argues that the success of organizations depends on their ability to design themselves as social learning systems and also to participate in broader learning systems such as an industry, a region, or a consortium. It explores the structure of these social learning systems. It proposes a social definition of learning and distinguishes between three `modes of belonging' by which we participate in social learning systems. Then it uses this framework to look at three constitutive elements of these systems: communities of practice, boundary processes among these communities, and
This article introduces a new interaction model called Instrumental Interaction that extends and generalizes the principles of direct manipulation. It covers existing interaction styles, including traditional WIMP interfaces, as well as new interaction styles such as two-handed input and augmented reality. It defines a design space for new interaction techniques and a set of properties for comparing them.
This materials development project is the result of a joint effort by Miami University and the National Science Teachers Association (NSTA). The project will combine the resources of the Univeristy and the publication department of NSTA, to work with schools to produce an innovative science journal for children in grades 3-6, a teacher support manual, a parent support manual, and a supporting computer network that will connect children with scientists and university science students in scientific inquiry. The journal will be the first national journal devoted to research scientists and children with an outlet for publication of scientific investigations conducted by children. Given the strong record of accomplishment of the PI and the publications division of the National Science Teachers Association, the panel feel it is likely that the Dragonfly, Dragonfly Companions. the Dragonfly Net will be a quality product and recommends funding this project at a high priority level. The Program Officer agrees with the panel and recommends funding this proposal.
DATE:
-
TEAM MEMBERS:
Christopher MyersPhyllis MarcuccioR. Hays CumminsChris WolfeCarolyn Haynes
ScienceQuest is an innovative program created by the Education Development Center that fosters an interest in science and technology among adolescents ages 10-14. This program builds on the successful "ThinkQuest" model, in which small teams of 2-3 students work with adult coaches to research subjects of interest and share their knowledge through the creation of websites. "ScienceQuest" teams focus on science topics and are housed in HUD Neighborhood Network technology centers, located in communities with HUD-assisted or insured housing residents. Participants include individuals with and without disabilities from low-income urban areas. Students select a science topic and research it using online resources, hands-on experiments and visits to museums and science centers. Coaches such as scientists, teachers, museum staff and other role models, as well as on-line scientists, provide assistance by setting goals, devising an action plan and identifying appropriate resources. The "I-Search" model, a four-step strategy used to direct student inquiry, is used to guide investigations and aid in content acquisition. Once completed, websites are mounted on the "ThinkQuest" server. Parental participation is encouraged throughout the process. "ScienceQuest" will be piloted in the greater Boston area in year one, and disseminated to 75 Neighborhood Network sites throughout the country in years two and three of the grant. Each site may have one or more teams. With more than 500 Neighborhood Networks in place, "ScienceQuest" has the potential for widespread dissemination.
Jon Miller of the Northwestern University Medical School is undertaking exploratory research into issues surrounding informing the public about on-going research. The specific activities to be undertaken as part of this Small Grant for Exploratory Research include: examining the scope and dimensions of the issues in the context of current learning and communications research, re-conceptualizing the problem in programmatic and research terms, and developing a general research program to address these issues over the next ten years.
Cornell's Laboratory of Ornithology will develop the "Cornell Nest Box Network (CNN)". This is an educational/research project that will enable lay people to participate in scientific research and it builds on a successful NSF grant "National Science Experiments". For this project, CNN participants will build and place nest boxes in their communities and monitor the boxes gathering information on the breeding success of their occupants. Participants will summarize and analyze their data and then send it to the Lab for more comprehensive analysis. Lab biologists will analyze the compiled data and report results in a variety of media including scientific reports and popular newsletters. The CNN includes both an educational and research agenda. Participants will learn about birds while participating directly in the scientific process. The research questions, requiring huge, continent-wide databases, will focus on the effects of acid rain on bird populations, geographic variation in avian clutch size, effects of ectoparasites on nesting birds and population dispersal, among others. The protocol will encourage group participation and will be especially suitable for families. It will involve a corps of trained "ambassadors" who will help sustain the project a local levels. One of the goals of the project is to move participants up a ladder of science knowledge from projects involving minimal knowledge and skill to those requiring more. It also addresses national education standards that call for increased opportunities for students to engage in extended inquiry and authentic research activities. After the fourth development year, this research/education project will become self-sustaining.
DATE:
-
TEAM MEMBERS:
Andre DhondtRick BonneyJohn FitzpatrickDavid Winkler
resourceprojectProfessional Development, Conferences, and Networks
The Massachusetts Institute of Technology is conducting a three-day symposium to consider how to use images to communicate science and technology most effectively. Participants will include scientists, imaging technologists, computer scientists, photographers, science writers, illustrators, computer modelers, mathematicians, and others involved with communicating the basic science and findings from research. The focus of the conference will be on communication -- both from the scientific community to the general public, and within the scientific community. The 300 conference attendees will hear presentations from professionals working in the area. However, they will spend the majority of the time working collaboratively on solutions to model problems such as how to represent the interaction of a receptor with a ligand, how to make visually explicit the passage of time at all scales, and how to explain visually a sequence of events. Those who have committed to attend the conference will participate for several months in a conference web site prior to and after the meeting. The web site will enable participants to "critique" and make modification to various images and text used to communicate science. It also will be used to enable participants to collaborate in working groups on the model problems. The PI's for the project are Boyce Rensberger and Felice Frankel. Rensberger is director of the Knight Science Journalism Fellowships program at MIT. He is a science writer and editor and has worked in these capacities for both the New York Times and The Washington Post. Frankel is Artist-in-Resident and research scientist in the Department of Electrical Engineering and Computer Science at MIT. She photographs and digitally images research data in science and engineering. She has collaborated with George Whitesides to publish "On the Surface of Things: Images of the Extraordinary in Science."
During the 3 years of this project, 72 high school and middle school teachers and 36 students will work as members of atmospheric research teams studying each of ten airshed around the Portland, OR metropolitan area. Each summer's activities include a 4-week atmospheric interaction research course and a one-week air quality measurement campaign during a pollution episode. Transfer to the classroom is anticipated through action research projects during the academic year. An interactive webpage will enable all partners to access data, real time models of the atmosphere, and descriptions of the action research projects. A lead high school will serve as the Horizons-Air site for an airshed zone and will work collaboratively with four other middle/high schools, the Horizons-Met sites.
DATE:
-
TEAM MEMBERS:
Linda GeorgeDaniel JohnsonWilliam Becker
The CMN helps communities in British Columbia and Canada map sensitive habitats and species distribution. Information is integrated from many sources to assist landuse planning and is freely available in over fifty user friendly atlases. The atlases have links to local and remote databases, WMS sources and geo-referenced video. The CMN supports Sensitive Habitat Inventory and Mapping (SHIM) projects and provides customized data entry, digitizing and other tools. By providing accurate and up to date information, the CMN and its many partners will help plan sustainable communities.
The Science Museum of Minnesota (SMM) requests a grant from the National Center for Research Resources through the SEPA program to develop and evaluate a model biomedical science education partnership program in collaboration with the University of Minnesota's Cancer Center, Medical School, School of Public Health, and College of Veterinary Medicine. The museum will work with 19 researchers at the University to develop a multifaceted exhibition and presentation program focusing on the importance of human tissues in biological development, function, and disease. The 1500-square-foot exhibition, to be located in SMM's new Human Body Gallery, will consist of an introduction to tissues and four topical exhibit clusters. Each topic was chosen because it tells a fascinating story of how the human body works and because it represents an important current NIH research focus in health and medicine. The exhibits will emphasize the importance of understanding how tissue function and viability leads to advances in detection, treatment, and curing different diseases. The exhibits closely support the National Science Education Standards Content Standards for Life Science for grades 5-9 (representing the majority of school field trip visitors to the museum.) A complimentary presentation/outreach program will involve NIH-supported researchers in three programs designed to increase public understanding of basic biomedical science, the causes and cures for disease, and the goals and achievements of biomedical research. A Visiting Scientists Program will feature scientists in the museum presenting programs and demonstrations related to their research interests. A Scientist Mentor Program will involve scientists closely with a diverse team of high-school aged youth to develop ongoing demonstrations and community outreach programs. A Dramatic Presentation will bring home to museum visitors the wider ethical and philosophical dimensions of tissue research.
This Phase I SEPA proposal supports a consortium of science and education partners that will develop System Dynamics (SD) computer models to illustrate basic health science concepts. The consortium includes Oregon Health Sciences University (OHSU), Portland Public Schools (PPS), Saturday Academy, and the Portland VA Medical Center. SD is a computer modeling technique in which diagrams illustrate system structure and simulations illustrate system behavior. Desktop computers and commercial software packages allow SD to be applied with considerable success in K-12 education. NSF grants to Portland Public Schools have trained over 225 high school teachers in Portland and surrounding areas. Two magnet programs have been established with an emphasis on systems and at least five other schools offer significant systems curriculum. Major components of this project include (1) Annual summer research internships at OHSU for high school teachers and high school students, (2) Development of SD models relevant to each research project, (3) Ongoing interactions between high school science programs and OHSU research laboratories, (4) Development of curriculum materials to augment the use of the SD model in the high school classroom or laboratory setting, and (5) Development of video materials to support the classroom teacher. Content will focus on four fundamental models: linear input/exponential output, bi-molecular binding (association/dissociation), population dynamics, and homeostasis. Each of these models is very rich and may be extended to a broad variety of research problems. In addition these models may be combined, for example to illustrate the effect of drugs (binding model) on blood pressure (homeostasis model). System Dynamics is an exemplary tool for the development of materials consistent with National Science Education Standards. SD was specifically developed to emphasize interactions among system structure, organization, and behavior. Students use these material as part of inquiry-based science programs in which the teacher serves as a guide and facilitator rather than the primary source of all content information; technical writing by students is also encouraged. Finally, these SD materials will provide a coherent body of work to guide the ongoing professional development of the classroom science teacher.
The Children's Museum of Houston (CMH) and Baylor College of Medicine (BCM) collaborated to create and travel a museum exhibit on children's environmental health for a target audience of children 5-10, their parents, caregivers, and teachers. My Home Planet Earth (MHPE) is based on the NIH-funded, interdisciplinary My Health My World educational program developed at BCM and disseminated nationally through Carolina Biological Supply. The aims of the project are to: (1) expand understanding by children (ages 5-10) and their caregivers of the health consequences of human induced changes in the environment and increase their abilities to make healthful decisions through informal self-directed activities in a museum setting; (2) encourage linkages between formal and informal education settings by providing a model for connecting classroom-based curricula to museum-based exhibits and informal learning programs, based on the My Health My World educational materials and the My Home Planet Earth exhibit and support programs; (3) help parents provide additional environmental health-related informal learning experiences for their children, and promote awareness of science and health careers; and (4) partner scientists and educators in the creation of a model environmental health sciences exhibit and support program for the field of family-centered informal learning. The exhibit and support programs are in the process of touring 18 youth museums, science centers and health museums over six years of travel (2002-2008). An estimated 1.5 million visitors will participate in the project by the end of the tour in 2008. In addition to these visitors, 1,000 families will participate in MHPE Family Learning Events, 9,000 teachers will be introduced to the My Health My World curriculum-360 of whom will participate in a day long MHMW workshop, 36 scientists will partner with host museums to enhance the learning and community impact of the project, and 180,000 children will visit the xhibit during a school field experience.