This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
Scientists and researchers from fields as diverse as oceanography and ecology, astronomy and classical studies face a common challenge. As computer power and technology improve, the sizes of data sets available to us increase rapidly. The goal of this project is to develop a new methodology for using citizen science to unlock the knowledge discovery potential of modern, large data sets. For example, in a previous project Galaxy Zoo, citizen scientists have already made major contributions, lending their eyes, their pattern recognition skills and their brains to address research questions that need human input, and in so doing, have become part of the computing process. The current Galaxy Zoo project has recruited more than 200,000 participants who have provided more than 100 million classifications of galaxies from the Sloan Digital Sky Survey. This project builds upon early successes to develop a mode of citizen science participation which involves not only simple "clickwork" tasks, but also involves participants in more advanced modes of scientific thought. As part of the project, a symbiotic relationship with machine learning tools and algorithms will be developed, so that results from citizen scientists provide a rich training set for improving algorithms that in turn inform citizen science modes of participation. The first phase of the project will be to develop a portfolio of pilot projects from astrophysics, planetary science, zoology, and classical studies. The second phase of the project will be to develop a framework - called the Zooniverse - to facilitate citizen scientists. In particular, research and machine-learning communities will be engaged to identify suitable projects and data sets to integrate into Zooniverse.
The ultimate goal with the Zooniverse is to create a sustainable future for large-scale, internet-based citizen science as part of every researcher?s toolkit, exemplifying a new paradigm in computational thinking, tapping the mental resources of a community of lay people in an innovative and complex manner that promises a profound impact on our ability to generate new knowledge. The project will engage thousands of citizens in authentic science tasks leading to a better public understanding of science and also, by the engagement of students, leading to interest in scientific careers.
DATE:
-
TEAM MEMBERS:
Geza GyukPamela GayChristopher LintottMichael RaddickLucy FortsonJohn Wallin
This introduction presents the essays belonging to the JCOM special issue on User-led and peer-to-peer science. It also draws a first map of the main problems we need to investigate when we face this new and emerging phenomenon. Web tools are enacting and facilitating new ways for lay people to interact with scientists or to cooperate with each other, but cultural and political changes are also at play. What happens to expertise, knowledge production and relations between scientific institutions and society when lay people or non-scientists go online and engage in scientific activities? From
Luckily enough, more democracy is always called for. Even in countries that can truly be described as democratic. And democracy (which is a constant reference in these pages) is increasingly related to knowledge, be it about whether growing GMOs, starting nuclear energy production or allowing the choice of a child’s gender through IVF techniques. The need to make democratic decisions on controversial issues, which increasingly imply scientific and technological knowledge, comes from the bottom, as citizens voice – sometimes even vehemently – the desire to express themselves.
Science must be open and accessible, and diffusion of knowledge should not be limited by patents and copyrights. After the Open Science Summit held in Berkeley, some notes about sharing scientific data and updating the social contract for science. Against the determinist view on technological and legal solutions, we need an explicit reflection on the relation between science and society. Both academic and industrial science seem unable to fulfill open science needs: new societal configurations are emerging and we should keep asking questions about appropriation, power, privatisation and
A workshop on science journalism organised at SISSA of Trieste, Italy a few weeks ago outlined scenarios that should serve as a source for debate among professionals and scholars to grasp how information activities regarding science, medicine and technology will evolve in the next few years. It is a time of great uncertainty, yet a common path to venture through can be made out: the new science journalism should meditate on a different concept of science, an in-depth conceptualisation of different audiences, alternative narrations and its role in the democratisation of knowledge within a
Eduard Kaeser has written an interesting and critical book that is concerned with the connections between science and everyday life. The conception of ‘pop science’ is introduced to characterize developments in science popularisation that are spectacular, superficial and potentially harmful to science-society relationships. The book is of special interest to the science communication community, since it may initiate discussion about the purposes of communicating science, and also about legitimate and illegitimate strategies and means of doing so.
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.
Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.
These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE:
-
TEAM MEMBERS:
Richard LadnerLibby CohenSheryl BurgstahlerWilliam McCarthy
Public communication on health issues on the Internet is not only a matter of popularization of medical information. It deeply deals with narration, conversation and dialogue, which are typical values in the Web 2.0. This interview will emphasize that blogs, forums, wiki are new ways in which population has been reconstructing and integrating medical knowledge. These ways are re-defining medical knowledge by means of unhinging the standard medical communication practices, based on a linear diffusion of knowledge form experts to laypeople.
Climate change is a multi-faceted issue. It relies on deep scientific bases, but merges with politics, economics, ethics and culture in a complex and strongly nonlinear social debate. This interview focuses on the relationships between public communication on climate change (with emphasis on the so-called ‘new media’) and the decision making processes. It argues that more productive and sustainable forms of communication on climate change are needed due to problems related with validation of information in the Web.
Technoscientific risks have been creating a growing social demand for participation in the scientific citizenship. This interview will emphasize that decision making (and so, in a more general sense, democracy) in the knowledge society requires new mediatic forums and new communication processes suitable to the highly multi- and inter-disciplinary nature of modern social debates. It argues that a new research agenda for risk conflicts, and a more neutral role for science journalism, are needed.
Media and communications technologies play a significant role in disaster management procedures in regards to the mobilization of resources in emergency situations. While the dissemination of warning messages relayed via broadcast technologies have had some positive outcomes in terms of reducing casualties in emergency situations in Bangladesh, there remain some specific problems in regards to the manner in which these messages are distributed within this developing nation. These problems are addressed within this paper. Examining the existing cyclonic warning dissemination system and the
DATE:
TEAM MEMBERS:
Sony Jalarajan RajMohammad Sahid UllahRawshon Akhter
Science journalism usually focuses on achievements presented in scientific papers previously published in specialized journals. In this paper we argue that the Actor-Network Theory (ANT) can help to widen this approach and reduce the dependency on scientific papers, by valuing not only scientists, but also other actors, theirs motivations, interests and conflicts. ANT could also help to reduce the distance between scientists and the audience by exposing uncertainties about the production of science.