As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Informal STEM learning opportunities are often rare in rural locations where the early childhood education system is also under-resourced. Through partnerships with educational researchers, early math educators, pediatric health experts, and pediatric clinics, this project will develop and study a new opportunity for informal math learning. The project will work with pediatric clinics that serve rural immigrant families who are racially, culturally, and linguistically diverse. The project leverages the high levels of trust many caregivers have in their child’s pediatrician to improve math learning during critical early years. This project will build on a previous program where physician text messages to caregivers supported youth literacy development. In this instance the project will support caregivers’ math interactions with their 3- and 4-year-olds to cultivate children's math knowledge and skills. The text messaging program will be grounded in research in child development, mathematics learning, parenting practices, and adult behavior change. Texts will also provide caregiver supports for how to engage their children in mathematical activates in their everyday lives and provide information about the important skills children are developing. Text messages will be co-developed with caregiver input, and focus on content underlying mathematical development such as Number Sense, Classification and Patterning, Measurement, Geometry, and Reasoning. Caregivers will receive text messages from their pediatric clinics three times a week for eight months. For example, three related texts supporting Number Sense include: “FACT: Kids enjoy counting and it prepares them for K! Mealtimes are a fun time to practice counting objects;” “TIP: At a meal, say: Can you count all the cups on the table? All the plates? What else can you count? (Forks) Tell them: Great job!” and “GROWTH: You are helping kids to count & get ready for K. At the park, ask: How many bikes are there? How many birds? Count together & find out!” Throughout the planning and implementation phases of the project the team will work closely with early education math experts, key advisors, and caregivers to ensure the text messaging program is tailored to meet the cultural, linguistic, and contextual needs of rural caregivers and children.
The project will research impacts of the text messaging program on children, caregivers, and clinical staff. First, the project will investigate the impact of the texting program on children through a randomized trial, and pre-and-post measures of early childhood math skills and abilities. Second, using interviews at baseline and in a 9-month follow-up, the project will study the texting program’s impact on caregivers’ perceptions regarding the importance of math learning for young children. Third, the project will explore the impact of the text messaging program on health professionals’ understanding of math learning in early childhood by collecting qualitative data and assessing attitudes about the clinic’s role in supporting early math. Caregivers and clinic staff will also participate in focus groups to better understand impacts for each of these groups. The project will reach 1000 families, who will be randomly assigned to treatment or control groups through block-randomization, stratified by caregiver language and child’s age. This parent-informed project will build evidence toward new approaches to promoting early math in the pediatric clinic, an informal environment that can reach all families and can leverage innovative technology. Findings will be shared widely though a communication and engagement plan that includes children, caregivers, physicians and clinic staff, informal STEM educators, researchers, and policy makers.
DATE:
-
TEAM MEMBERS:
Lisa ChamberlainSusanna LoebJaime Peterson
This project investigates long-term human-robot interaction outside of controlled laboratory settings to better understand how the introduction of robots and the development of socially-aware behaviors work to transform the spaces of everyday life, including how spaces are planned and managed, used, and experienced. Focusing on tour-guiding robots in two museums, the research will produce nuanced insights into the challenges and opportunities that arise as social robots are integrated into new spaces to better inform future design, planning, and decision-making. It brings together researchers from human geography, robotics, and art to think beyond disciplinary boundaries about the possible futures of human-robot co-existence, sociality, and collaboration. Broader impacts of the project will include increased accessibility and engagement at two partner museums, interdisciplinary research opportunities for both undergraduate and graduate students, a short video series about the current state of robotic technology to be offered as a free educational resource, and public art exhibitions reflecting on human-robot interactions. This project will be of interest to scholars of Science and Technology Studies, Human Robotics Interaction (HRI), and human geography as well as museum administrators, educators and the general public.
This interdisciplinary project brings together Science and Technology Studies, Human Robotics Interaction (HRI), and human geography to explore the production of social space through emerging forms of HRI. The project broadly asks: How does the deployment of social robots influence the production of social space—including the functions, meanings, practices, and experiences of particular spaces? The project is based on long-term ethnographic observation of the development and deployment of tour-guiding robots in an art museum and an earth science museum. A social roboticist will develop a socially-aware navigation system to add nuance to the robots’ socio-spatial behavior. A digital artist will produce digital representations of the interactions that take place in the museum, using the robot’s own sensor data and other forms of motion capture. A human geographer will conduct interviews with museum visitors and staff as well as ethnographic observation of the tour-guiding robots and of the roboticists as they develop the navigation system. They will produce an ethnographic analysis of the robots’ roles in the organization of the museums, everyday practices of museum staff and visitors, and the differential experiences of the museum space. The intellectual merits of the project consist of contributions at the intersections of STS, robotics, and human geography examining the value of ethnographic research for HRI, the development of socially-aware navigation systems, the value of a socio-spatial analytic for understanding emerging forms of robotics, and the role of robots within evolving digital geographies.
This project is jointly funded by the Science and Technology Studies program in SBE and Advancing Informal STEM Learning (AISL) Program in EHR.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
Increasing greater diversity, equity, and inclusion in science not only presents a social justice goal, but is also vital to the financial and social success of the nation. The stereotype of the older white male scientist has obscured the contributions of women and people of color. This project seeks to remedy these perceptions which are barriers to entry into STEM fields. The project will create a large-scale hub for STEM themed video content on YouTube and other social media platforms, featuring 100+ original STEM videos produced by PBS partners. This hub and accompanying research seeks to identify the characteristics of online STEM content that attract (or fail to attract) underrepresented groups, specifically Black and Hispanic communities as well as women of all races. The objectives of this project are to 1) provide a unified online science-themed hub, PBS Terra, on YouTube and other platforms for hosting, sharing, and distributing digital STEM series from diverse producers from across the PBS system; 2) conduct surveys and focus groups to examine and understand the needs and expectations of women, Black and Hispanic communities and their consumption of STEM video content online and 3) test hypotheses about the communicative strategies of STEM videos that feature Black and Hispanic female scientists. Project collaborators include PBS, researchers at the University of Utah and the University of Georgia, and consultants and advisors with expertise in broadening participation and inclusion in STEM.
Little is known about how or why adult Americans seek science content on YouTube, especially the motivations of adults from underrepresented minorities and females. The key research questions in this project are: 1) Why do Black and Hispanic audiences and women of all races seek science video content online? 2) How does showing Black and Hispanic female scientists in science video content on YouTube impact viewers’ identification with and sense of belonging in STEM? 3) How does the use of humor by Black and Hispanic scientists in YouTube science content affect viewers’ perceptions of the communicator and their engagement with STEM content? 4) How does the appearance and manner of dress of Black and Hispanic scientists in YouTube science content affect viewers’ perceptions in the aforementioned areas? A nationally representative baseline survey will be conducted. A probability sample of 2000 respondents will be obtained including oversampling of Black and Hispanic audiences. To complement findings from the survey, focus groups will be conducted in eight different regions of the country to learn why these targeted audiences do or do not seek science content on YouTube and what motivates them to share the content with their social media network. In addition, an experiment embedded in an online survey will test the hypothesis that greater on-screen representation of women and scientists of color will broaden existing perceptions about scientists. The experiment will consist of a 3 (scientist’s race: Black/Hispanic/White) × 2 (science issue: controversial/non-controversial) × 2 (style: casual/professional) between-subjects design. Survey participants will be randomly assigned to the experimental conditions. These factors (science issue and host appearance) can be altered by content producers to better reach and engage the targeted audiences. The project not only investigates theoretical questions at the intersection of STEM stereotypes and race, but findings related to these experimental conditions will offer practical insight into strategies that can be used by science communication practitioners.
DATE:
-
TEAM MEMBERS:
Adam DylewskiSara YeoMichael Cacciatore