This INSPIRE award is partially funded by the Cyber-Human Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer Science and Engineering, the Gravitational Physics Program in the Division of Physics in the Directorate for Mathematical and Physical Sciences, and the Office of Integrative Activities.
This innovative project will develop a citizen science system to support the Advanced Laser Interferometer Gravitational wave Observatory (aLIGO), the most complicated experiment ever undertaken in gravitational physics. Before the end of this decade it will open up the window of gravitational wave observations on the Universe. However, the high detector sensitivity needed for astrophysical discoveries makes aLIGO very susceptible to noncosmic artifacts and noise that must be identified and separated from cosmic signals. Teaching computers to identify and morphologically classify these artifacts in detector data is exceedingly difficult. Human eyesight is a proven tool for classification, but the aLIGO data streams from approximately 30,000 sensors and monitors easily overwhelm a single human. This research will address these problems by coupling human classification with a machine learning model that learns from the citizen scientists and also guides how information is provided to participants. A novel feature of this system will be its reliance on volunteers to discover new glitch classes, not just use existing ones. The project includes research on the human-centered computing aspects of this sociocomputational system, and thus can inspire future citizen science projects that do not merely exploit the labor of volunteers but engage them as partners in scientific discovery. Therefore, the project will have substantial educational benefits for the volunteers, who will gain a good understanding on how science works, and will be a part of the excitement of opening up a new window on the universe.
This is an innovative, interdisciplinary collaboration between the existing LIGO, at the time it is being technically enhanced, and Zooniverse, which has fielded a workable crowdsourcing model, currently involving over a million people on 30 projects. The work will help aLIGO to quickly identify noise and artifacts in the science data stream, separating out legitimate astrophysical events, and allowing those events to be distributed to other observatories for more detailed source identification and study. This project will also build and evaluate an interface between machine learning and human learning that will itself be an advance on current methods. It can be depicted as a loop: (1) By sifting through enormous amounts of aLIGO data, the citizen scientists will produce a robust "gold standard" glitch dataset that can be used to seed and train machine learning algorithms that will aid in the identification task. (2) The machine learning protocols that select and classify glitch events will be developed to maximize the potential of the citizen scientists by organizing and passing the data to them in more effective ways. The project will experiment with the task design and workflow organization (leveraging previous Zooniverse experience) to build a system that takes advantage of the distinctive strengths of the machines (ability to process large amounts of data systematically) and the humans (ability to identify patterns and spot discrepancies), and then using the model to enable high quality aLIGO detector characterization and gravitational wave searches
DATE:
-
TEAM MEMBERS:
Vassiliki KalogeraAggelos KatsaggelosKevin CrowstonLaura TrouilleJoshua SmithShane LarsonLaura Whyte
The Adler Planetarium, Johns Hopkins University, and Southern Illinois University-Edwardsville are investigating the potential of online citizen science projects to broaden the pool of volunteers who participate in analysis and investigation of digital data and to deepen volunteers' engagement in scientific inquiry. The Investigating Audience Engagement with Citizen Science project is administering surveys and conducting case studies to identify factors that lead volunteers to engage in the astronomy-focused Galaxy Zoo project and its Zooniverse extensions. The project is (1) identifying volunteers' motivations for joining and staying involved, (2) determining factors that influence volunteers' movement from lower to higher levels of involvement, and (3) designing features that influence volunteer involvement. The project's research findings will help informal science educators and scientists refine existing citizen science programs and develop new ones that maximize volunteer engagement, improve the user experience, and build a more scientifically literate public.
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by developing a suite of digital tools designed to support positive messaging around skill-based education and careers and to improve mentors' communication with middle school-aged youth mentees. Maintaining U.S. economic advantage requires attracting talent to high-growth, high-demand skill-based, STEM-related careers that are traditionally attained through Career and Technical Education (CTE). Replacing old negative perceptions with new, more accurate messages about CTE and then reaching youth with these messages before high school is essential. Career-focused mentoring is a vehicle for delivering these messages and supporting youth exploration of CTE as a possible path for their own lives. Investigators will explore the hypothesis that through strong connections between those best positioned to articulate industry needs (mentors) and those most receptive to filling that need (mentees), this project will improve youth awareness and interest in CTE and the rewarding careers that are available to them. Research and development activities will be carried out collaboratively in informal learning environments in Boston and New York City that serve middle school-aged youth from underrepresented communities, through career-focused mentoring programs. The project team, led by media producers of the WGBH Education Foundation, includes market researchers and communications strategists at Global Strategy Group, learning scientists at Education Development Center, and mentorship program partners at SkillsUSA, Learning for Life's Middle School Explorer Clubs, and Boy Scouts of America's Scoutreach. If promising, the career-focused mentoring programs of SkillsUSA, Learning for Life, and Boy Scouts of America will incorporate the messaging roadmap and digital tools to support their mentoring curricula, which impact greater than one million youth in each year.
In the first phase of research, investigators will study perceptions of STEM-focused CTE from a nationwide sample of 800 middle school-aged youth and 30 mentors from skill-based STEM industries. In the second phase, investigators will work with six program leaders and 30 mentors from SkillsUSA, Explorer Clubs, Scoutreach, and other mentoring programs to document the needs of mentors for support as they enter into the mentoring process. The third phase will engage mentorship program leaders and 36 mentors in the iterative development of a suite of digital tools that would support positive messaging around skill-based education and careers and that would improve mentors' communication with youth mentees. In addition, a pre-post mentorship program pilot study will explore the promise of the digital tools for effectively supporting mentor-mentee communications that improve youth awareness and interest in STEM-focused CTE and skill-based, STEM-related careers. Thirty six mentors and 288 of their youth mentees will participate in the pilot study. Data sources for research include interviews and surveys of program leaders, mentors, and mentees, as well as tracking mentor activity within the online digital tool environment. This research would advance knowledge of how mentors influence disadvantaged youth perceptions of and interest in CTE and skill-based, STEM career pathways, in which there is currently little evidence as to how mentor preparation shapes ability to positively impact youth outcomes. Major outcomes will include a) deeper understandings of youth and mentor perceptions of CTE and mentors' needs for supporting their work with mentees, b) a messaging roadmap and digital tools that prepare mentors for their work with middle school youth, and c) empirical findings regarding the potential of the digital tools for effectively supporting mentor-mentee communications that improve youth's awareness and interest in CTE and skill-based, STEM-related careers. Outcomes will be shared widely to research, education, and industry communities, locally and nationally, through social media, partner networks, conference presentations, and research publications. An advisory board will provide independent review on the project activities.
Since 2000, the UK government has funded surveys aimed at understanding the UK public's attitudes toward science, scientists, and science policy. Known as the Public Attitudes to Science series, these surveys and their predecessors have long been used in UK science communication policy, practice, and scholarship as a source of authoritative knowledge about science-related attitudes and behaviors. Given their importance and the significant public funding investment they represent, detailed academic scrutiny of the studies is needed. In this essay, we critically review the most recently
In the 1920s, John Dewey and Walter Lippmann both wrote important books examining whether the public was capable of playing a constructive role in policy, particularly when specialized knowledge was involved. This essay uses the Lippmann–Dewey debate to identify new challenges for science education and to explore the relationship between science education and science communication. It argues that science education can help foster democracy in ways that embody Habermas' ideal of the public sphere, but only if we as a field pay more attention to (1) the non-scientific frames and narratives that
The lack of diversity in the clinician-scientist workforce is a “very serious concern to the NIH” and to health care professions. Current efforts to broaden participation in STEM fields typically target high school and college-age students. Yet, history and national trends suggest that these efforts alone will not result in rapid or significant change because racial and ethnic disparities are already evident by this time. Children are forming career preferences as early as elementary school, a time when they have little exposure to science and STEM career options. The overall vision of this team is to meet the nation’s workforce goal of developing a diverse, clinician-scientist workforce while meeting the nation’s STEM goals. As a step toward this vision, the goal of This Is How We “Role” is to inspire elementary school students towards careers as clinician-scientists by increasing the number of K-4 students with authentic STEM experiences.
This goal will be attained through two specific aims. The focus of Aim 1 is to distribute and evaluate a K-4 afterschool program across the diverse geographic regions of the US, to support the development of a robust and diverse clinician-scientist workforce. Aim 2 is focused on developing the community resources (afterschool program curriculum, informational books and online certificate program) for promoting health science literacy and encouraging careers in biomedical and clinical research for K-4 students from underserved and underrepresented communities. Combined, these aims will enhance opportunities for young children from underserved communities to have authentic STEM experiences by providing culturally responsive, afterschool educational programs which will be delivered by university student and clinician-scientist role models who are diverse in gender, race, and ethnicity.
Books and an online certificate program about health issues impacting people and their animals (i.e. diabetes, tooth decay) will be developed and distributed to children unable to attend afterschool programs. Further, by engaging veterinary programs and students from across the US, along with practicing veterinarians, this program will examine whether the approaches and curriculum developed are effective across the diverse communities and geographic regions that span the country. Elementary school teachers will serve as consultants to ensure that educational materials are consistent with Next Generation Science Standards, and will assist in training university students and clinician-scientists to better communicate the societal impact of their work to the public.
The program will continue to use the successful model of engaging elementary school students in STEM activities by using examples of health conditions that impact both people and their animals. Ultimately, this project will educate, improve the health of, and attract a diverse pool of elementary school students, particularly those from underserved communities, to careers as clinician-scientists.
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:
Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.
Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.
This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
This issue sees the implementation of new designs for the JCOM website and articles and there are plans for further updates over the next year. In a recent survey, we have explored readers opinions of the journal with a view to introducing improvements. Your interests are diverse, which is not surprising for a field which ranges from books and print media, to museums and interactive technologies. We are also reviewing our peer review process to ensure that it meets the needs of our authors.
For decades, particle physicists have been using open access archives of preprints, i.e. research papers shared before the submission to peer reviewed journals. With the shift to digital archives, this model has proved to be attractive to other disciplines: but can it be exported? In particle physics, archives do not only represent the medium of choice for the circulation of scientific knowledge, but they are central places to build a sense of belonging and to define one's role within the community.
When entering the research world, Early Career Researchers (ECRs) may encounter difficulties building a good reputation for their research, its quality and the research results. Open access is the movement that could assist ECRs to: (a) widely disseminate their scholarly outputs, (b) demonstrate the research and societal impact of their work and, (c) organise online research portfolios that can be accessed by all researchers, as well as prospective employers.
During the last decade universities have developed policies and infrastructures to support open access to publications but now it is time to move a step forward. There is an increasing demand for accessing data supporting the research results to validate and reproduce them. Therefore universities have to be prepared for this new challenge that goes beyond dissemination because it requires a strategy for managing research data within institutions. In this paper I will try to give some hints on how to deal with this challenge that can be framed in the new open science movement aimed at providing
Open science is the most recent paradigm shift in the practice of science. However, it is a practice that has emerged relatively recently and as such, its definition is constantly-shifting and evolving. This commentary describes the historical background of open science and its current practice, particularly with reference to its relationship with public engagement with research.