Skip to main content

Community Repository Search Results

resource project Media and Technology
Twin Cities PBS BRAINedu: A Window into the Brain/Una ventana al cerebro, is a national English/Spanish informal education project providing culturally competent programming and media resources about the brain’s structure and function to Hispanic middle school students and their families. The project responds to the need to eliminate proven barriers to Hispanic students’ STEM/neuroscience education, increase Hispanic participation in neuroscience and mental health careers and increase Hispanic utilization of mental health resources.

The program’s goals are to engage Hispanic learners and families by


empowering informalSTEM educators to provide culturally competent activities about the brain’s structure and function;
demonstrating neuroscience and mental health career options; and
reducing mental health stigma, thus increasing help-seeking behavior.


The hypothesis underpinning BRAINedu’s four-year project plan is that participating Hispanic youth and families will be able to explain how the brain works and describe specific brain disorders; demonstrate a higher level of interest of neuroscience and mental health careers and be more willing to openly discuss and seek support for brain disorders and mental health conditions.

To achieve program goals, Twin Cities PBS (TPT) will leverage existing partnerships with Hispanic-serving youth educational organizations to provide culturally competent learning opportunities about brain health to Hispanic students and families. TPT will partner with neuroscience and mental health professionals, cultural competency experts and Hispanic-serving informal STEM educators to complete the following objectives:


Develop bilingual educational resources for multigenerational audiences;
Provide professional development around neuroscience education to informal educators, empowering them to implement programming with Hispanic youth and families, and
Develop role model video profiles of Hispanic neuroscience professionals, and help partner organizations produce autobiographical student videos.


We will employ rigorous evaluation strategies to measure the project’s impact on Hispanic participants: a) understanding of neuroscience and brain health, particularly around disorders that disproportionately affect the Hispanic community; b) motivation to pursue neuroscience or mental health career paths; and c) mental health literacy and help-seeking behavior. The project will directly reach 72 Hispanic-serving informal STEM educators and public health professionals, and 200 children and 400 parents in underserved urban, suburban and rural communities nationwide.
DATE: -
TEAM MEMBERS: Rita Karl
resource project Media and Technology
The lack of diversity in the clinician-scientist workforce is a “very serious concern to the NIH” and to health care professions. Current efforts to broaden participation in STEM fields typically target high school and college-age students. Yet, history and national trends suggest that these efforts alone will not result in rapid or significant change because racial and ethnic disparities are already evident by this time. Children are forming career preferences as early as elementary school, a time when they have little exposure to science and STEM career options. The overall vision of this team is to meet the nation’s workforce goal of developing a diverse, clinician-scientist workforce while meeting the nation’s STEM goals. As a step toward this vision, the goal of This Is How We “Role” is to inspire elementary school students towards careers as clinician-scientists by increasing the number of K-4 students with authentic STEM experiences.

This goal will be attained through two specific aims. The focus of Aim 1 is to distribute and evaluate a K-4 afterschool program across the diverse geographic regions of the US, to support the development of a robust and diverse clinician-scientist workforce. Aim 2 is focused on developing the community resources (afterschool program curriculum, informational books and online certificate program) for promoting health science literacy and encouraging careers in biomedical and clinical research for K-4 students from underserved and underrepresented communities. Combined, these aims will enhance opportunities for young children from underserved communities to have authentic STEM experiences by providing culturally responsive, afterschool educational programs which will be delivered by university student and clinician-scientist role models who are diverse in gender, race, and ethnicity.

Books and an online certificate program about health issues impacting people and their animals (i.e. diabetes, tooth decay) will be developed and distributed to children unable to attend afterschool programs. Further, by engaging veterinary programs and students from across the US, along with practicing veterinarians, this program will examine whether the approaches and curriculum developed are effective across the diverse communities and geographic regions that span the country. Elementary school teachers will serve as consultants to ensure that educational materials are consistent with Next Generation Science Standards, and will assist in training university students and clinician-scientists to better communicate the societal impact of their work to the public.

The program will continue to use the successful model of engaging elementary school students in STEM activities by using examples of health conditions that impact both people and their animals. Ultimately, this project will educate, improve the health of, and attract a diverse pool of elementary school students, particularly those from underserved communities, to careers as clinician-scientists.
DATE: -
TEAM MEMBERS: Sandra San Miguel
resource project Media and Technology
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:

Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.

Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.

This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
DATE: -
TEAM MEMBERS: Melinda Miller Gibbons Erin Hardin
resource project Media and Technology
In January 2006, the Dolan DNA Learning Center launched its SEPA Phase I project: Inside Cancer, a media-rich internet site that examines the molecular genetic basis of cancer. We now propose a Phase II Project, which will employ a six-part strategy to broadly disseminate the site and evaluate its use as a resource in high school biology and health education. a) A partnership will disseminate the site to 800 secondary science teachers at one-day workshop held at 20 sites nationwide. This cost-effective program will focus on key concepts and relevant teaching standards, and also provide a dedicated base for conducting second-round training and evaluation activities. b) An online Teacher Center will allow teachers to develop custom multimedia lessons based on Inside Cancer materials. Key features will be a Concept Matrix, Lesson Exchange, and Atomizer, which will match content with teaching standards, facilitate a community approach to lesson plan development, and provide a searchable interface of over 3,000 multimedia content "atoms." c) Fellowships will allow three lead faculty to work directly with DNALC staff to develop the Teacher Center and model lesson plans (DNALC Fellows). Eighty workshop alumni will serve as Regional Fellows and receive stipends to conduct second-round training activities reaching 640 additional teachers. d) An annual review will assess fidelity to project objectives and analyze site logs to detect patterns of use. An online survey of 1,500 Inside Cancer users annually will assess differences in site use among teachers, students, science and medical professionals, and the general public. e) A longitudinal evaluation of 1,440 participants in workshops and second-round activities will gauge how teachers use Inside Cancer and the Teacher Center, and how their teaching behavior changes over time. f) A controlled study will compare attitudinal and learning effects among 280 high school students - half of whom use Inside Cancer in their classes an half who don't. Biology and health classes will be selected from a single school district that reflects the ethnic and racial distribution of the U.S. population.
DATE: -
TEAM MEMBERS: David Micklos
resource project Media and Technology
The Internet, specifically the World Wide Web (WWW), has the potential to deliver science education materials directly to classrooms, media centers, libraries and homes. The current application seeks to use this new technology through a collaborative effort of an active scientist and a group of middle school science teachers to develop, disseminate and evaluate educational materials related to neuroscience for use in middle school science classes. This project attempts to introduce new technologies into the science classroom, extend science education to include the information superhighway and increase parental involvement in their children's education. Materials will be integrated with the existing middle school science curriculum and will include l) on-line and off-line experiments and activities covering a range of topics in neuroscience, 2) a "virtal neuroscience laboratory", 3) an Internet neuroscience resource list and 4) a "Neuroscientist Network" consisting of active neuroscientists around the world who will serve as experts answering student questions. All activities will be designed will attention to being self-paced, hands-on, entertaining and to involve Cooperative learning. Both quantitative and qualitative methods will be used to evaluate the usage of the Intemet Neuroscience Resource. It is hoped that this project will serve as a model to other scientists and teachers and to encourage them to develop Internet resources in their own areas of expertise for use in the classroom.
DATE: -
TEAM MEMBERS: Eric Chudler
resource project Media and Technology
The Internet has seen an explosive growth in the past few years, and masses of information on cancer are readily available to anyone with a live connection. Unfortunately, the vast majority of this information is presented in long test passages, with few illustrations and non multi- media elements to increase user interest. Absent are materials that help people appreciate how basic research in cancer genetics is being rapidly translated into new options for diagnosis, treatment and prevention. We seek support to create an extensive WWW site, Inside Cancer, which literally will take people into the workings of the cancer cell and into the laboratories of scientists who are revolutionizing cancer research. Building upon the project staff's strong experience in building multimedia WWW sites, Inside Cancer will make use of the most up-todate technology to merge animation and video into a visually stimulating experience. At the same time, the project draws scientific authority from a world-renowned research institute and advisors who have played important roles in the development of modern cancer research. Five modules will be developed. What is Cancer? quickly answers this and other related questions in short animations and prepares more curious visitors for the next modules. Cancer in the Laboratory features researchers explaining animated sequences of their own experiments, which laid the foundation for understanding cancer at the molecular level. Cancer Causes and Prevention animates the molecular events triggered by carcinogens, such as tobacco smoke and diet and emphasizes how lifestyle changes can reduce cancer risk. In Cancer Diagnosis and Treatment visitors shadow doctors making a cancer diagnosis, showing the connections between cancer cell alterations and new treatment options. Pathways to Cancer takes visitors on a 3-dimensional tour of a cell and its signaling pathways, then allows them to see downstream effects of mutations and their relation to cancer evelopment. As new findings and therapies are discovered, we will update the modules to keep Inside Cancer current.
DATE: -
TEAM MEMBERS: David Micklos Shirley Chan Susan Lauter
resource project Media and Technology
Recent biomedical research has transformed scientific understanding of human biology. But many of these advances haven’t filtered into public awareness, hindering our ability to make good health-related decisions. A new educational program ‒ Biology of Human ‒ will help the public, particularly young people, better understand advances in biomedical research. This innovative, learning research-based science education program is strategically designed to increase awareness of and understanding about new biomedical research developments pertaining to human biology. Biology of Human will provide a sophisticated science education outreach package for students aged 11 to 15 and adults, including parents and educators. The project's goal is to leverage the latest biomedical information and innovations, a dynamic suite of educational and dissemination strategies, and research-driven approach grounded in sociology to broadly educate youth and adults about human biology. A team led by the University of Nebraska State Museum, the Department of Sociology at the University of Nebraska-Lincoln, and the NIH/NCRR-funded Nebraska Center for Virology (a Center of Biomedical Research Excellence) will work with science writers, kids, and educators to complete three specific aims: 1) stimulate interest in and understanding of biomedical research's importance to diverse individuals' health, communities, and environments; 2) establish partnerships among science educators, biomedical researchers, science journalists, and others to create dynamic educational resources focused on biomedical research developments and human biology; and 3) increase youths' interest in biomedical science. Biology of Human will provide adults and youth with several simultaneous, complementary options for learning about how biomedical research has helped us understand human biology including essays, books and blogs; entertaining and scientifically accurate mobile and tablet apps; activities and graphic stories; and a Web site that complements and supports the project's professional development programs. More than 175,000 youth and adults are expected to be directly impacted through this effort.
DATE: -
TEAM MEMBERS: Judy Diamond Julia McQuillan
resource project Media and Technology
The long-term goal is to broaden our model program that currently targets African-American populations in the national capital area. The aim of the program is to: a) educate junior and senior high students and elementary school teachers directly; and b) provide opportunities for exploration of health-related sciences for the public at large (via an interactive website) so that topics in the biomedical sciences become "friendly and familiar" rather than the existing stereotype that science is erudite, obtuse, and incomprehensible. Specific objectives: (A) Design hands-on experiences in science laboratories and opportunities to interact with scientists in the setting of a sophisticated research institute; especially target under-represented minorities, students from inner city schools and other local schools where science opportunities may be limited. This will include junior and high school students, elementary school teachers, as well as interactions with Children's Museum and other similar organizations. (B) Set up interactive web-based informatics to include: i) a system where high school students could refine the question they are posing for science projects by discussing it with a professional scientist; ii) a general "ask-the-expert" site for science and health issues; iii) a reference site containing the detailed experimental protocols for student experiments; and iv) an interactive resource to aid teachers throughout the U.S. to establish contacts with scientists. The goal of this project is to extend the reach of current health science programs that are targeted to females, African-American junior and senior high school students, and elementary school teachers, located in the Washington, D.C., metropolitan area. The project includes laboratory apprenticeships, student mentoring, and an interactive website to help students and teachers establish contact with scientists nationwide.
DATE: -
TEAM MEMBERS: Marti Jett Debra Yourick