Skip to main content

Community Repository Search Results

resource research Media and Technology
This report from the National Research Council explores how learning changes the physical structure of the brain, how existing knowledge affects what people notice and how they learn, the amazing learning potential of infants, and the relationship between classroom learning and learning in everyday settings such as community and the workplace. It identifies learning needs and opportunities for teachers and provides a realistic look at the role of technology in education.
DATE:
TEAM MEMBERS: National Research Council
resource project Exhibitions
This award is for a Science and Technology Center devoted to the emerging area of nanobiotechnology that involves a close synthesis of nano-microfabrication and biological systems. The Nanobiotechnology Center (NBTC) features a highly interdisciplinary, close collaboration between life scientists, physical scientists, and engineers from Cornell University, Princeton University, Oregon Health Sciences University, and Wadsworth Center of the New York State Health Department. The integrating vision of the NBTC is that nanobiotechnology will be the genesis of new insights into the function of biological systems, and lead to the design of new classes of nano- and microfabricated devices and systems. Biological systems present a particular challenge in that the diversity of materials and chemical systems for biological applications far exceeds those for silicon-based technology in the integrated-circuit industry. New fabrication processes appropriate for biological materials will require a substantial expansion in knowledge about the interface between organic and inorganic systems. The ability to structure materials and pattern surface chemistry at small dimensions ranging from the molecular to cellular scale are the fundamental technologies on which the research of the NBTC is based. Nanofabrication can also be used to form new analytical probes for interrogating biological systems with unprecedented spatial resolution and sensitivity. Three unifying technology platforms that foster advances in materials, processes, and tools underlie and support the research programs of the NBTC: Molecules of nanobiotechnology; Novel methods of patterning surfaces for attachment of molecules and cells to substrates; and Sensors and devices for nanobiotechnology. Newly developed fabrication capabilities will also be available through the extensive resources of the Cornell Nanofabrication Facility, a site of the NSF National Nanofabrication Users Network. The NBTC will be an integrated part of the educational missions of the participating institutions. NBTC faculty will develop a new cornerstone graduate course in nanobiotechnology featuring nanofabrication with an emphasis on biological applications. Graduate students who enter the NBTC from a background in engineering or biology will cross-train in the other field by engaging in a significant level of complementary course work. Participation in the NBTC will prepare them with the disciplinary depth and cross-disciplinary understanding to become next generation leaders in this emerging field. An undergraduate research experience program with a strong mentoring structure will be established, with emphasis on recruiting women and underrepresented minorities into the program. Educational outreach activities are planned to stimulate the interest of students of all ages. One such activity partnered with the Science center in Ithaca is a traveling exhibition for museum showings on the subject of nano scale size. National and federal laboratories and industrial and other partners will participate in various aspects of the NBTC such as by hosting interns, attendance at symposia and scientist exchanges. Partnering with the industrial affiliates will be emphasized to enhance knowledge transfer and student and postdoctoral training. This specific STC award is managed by the Directorate for Engineering in coordination with the Directorates for Biological Sciences, Mathematical and Physical Sciences, and Education and Human Resources.
DATE: -
TEAM MEMBERS: Harold Craighead Barbara Baird
resource project Professional Development, Conferences, and Networks
Phylogenetic groupings of organisms are the basis for predictive classifications and biological information systems. Organizing biological knowledge and their parallel hierarchies according to phylogenetic relationships has become increasingly important for many segments of science and society (i.e., genetic databases such as GenBank). Yet, our understanding of the tree of life is still very incomplete at all taxonomic levels because phylogenetic hypotheses are typically characterized by inadequate taxon samples, and the data themselves are often variable across the included taxa with respect to kind, quantity, and quality. In addition, methods of analysis vary in their appropriateness and applicability, thus making comparison of phylogenetic trees difficult. These impediments need to be addressed if we are to have a tree of life for the major groups of organisms within a reasonable time frame. Equally important will be to ensure that phylogenetic knowledge is accessible and useful to researchers, institutions, and the government agencies who need it. This proposal seeks to bring together approximately 25-30 leading systematic biologists and nonsystematists interested in phylogenetic research and informatics (phyloinformatics). The workshop will attempt to identify the research needed to assemble the tree of life and make that information available to the global user community within a reasonable time frame. The workshop will formulate recommendations designed to promote institutional changes within the systematic research community to accelerate phylogenetic understanding, identify research efforts that will result in large-scale increases in phylogenetically informative data and improve data analysis, and specify research, technological advances, and infrastructural needs to store, retrieve, and manipulate large amounts of phylogenetic information and make it widely available.
DATE: -
TEAM MEMBERS: Joel Cracraft Michael Donoghue
resource project Public Programs
Cornell's Laboratory of Ornithology will develop the "Cornell Nest Box Network (CNN)". This is an educational/research project that will enable lay people to participate in scientific research and it builds on a successful NSF grant "National Science Experiments". For this project, CNN participants will build and place nest boxes in their communities and monitor the boxes gathering information on the breeding success of their occupants. Participants will summarize and analyze their data and then send it to the Lab for more comprehensive analysis. Lab biologists will analyze the compiled data and report results in a variety of media including scientific reports and popular newsletters. The CNN includes both an educational and research agenda. Participants will learn about birds while participating directly in the scientific process. The research questions, requiring huge, continent-wide databases, will focus on the effects of acid rain on bird populations, geographic variation in avian clutch size, effects of ectoparasites on nesting birds and population dispersal, among others. The protocol will encourage group participation and will be especially suitable for families. It will involve a corps of trained "ambassadors" who will help sustain the project a local levels. One of the goals of the project is to move participants up a ladder of science knowledge from projects involving minimal knowledge and skill to those requiring more. It also addresses national education standards that call for increased opportunities for students to engage in extended inquiry and authentic research activities. After the fourth development year, this research/education project will become self-sustaining.
DATE: -
TEAM MEMBERS: Andre Dhondt Rick Bonney John Fitzpatrick David Winkler
resource project Public Programs
The CMN helps communities in British Columbia and Canada map sensitive habitats and species distribution. Information is integrated from many sources to assist landuse planning and is freely available in over fifty user friendly atlases. The atlases have links to local and remote databases, WMS sources and geo-referenced video. The CMN supports Sensitive Habitat Inventory and Mapping (SHIM) projects and provides customized data entry, digitizing and other tools. By providing accurate and up to date information, the CMN and its many partners will help plan sustainable communities.
DATE:
TEAM MEMBERS: Rob Knight
resource project Media and Technology
BioTrac will expand opportunities in biomedicine for low-income, first-generation college-bound high school students, increasing the number interested in, and prepared to enter, the biomedical research pipeline. Specific objectives are to: (1) Raise awareness of careers in biomedicine and provide students with real-world biomedical research experiences; (2) Increase awareness of requirements and opportunities for related post-secondary study; (3) Increase public understanding of the importance and diversity of biomedical research; and (4) Disseminate project outcomes. In collaboration with the University of Miami (UM) and Miami-Dade County Public Schools (M-DCPS), the Museum will design and implement a replicable model program exposing students to research on selected priority areas outlined in the Public Health Service's Healthy People 2000 agenda. The program will focus on areas with significant local research capacity, ties to local growth industries, and relevance to Miami-Dade's diverse communities. Students will investigate each area through hands-on lab activities, on-line research, site visits to research facilities, and through interactions with research scientists at UM's nationally renowned Jackson Memorial Medical Complex. Students will work in teams to conduct community-focused research on aspects of each priority area, using technology skills acquired as part of the program to document their research through digital video, PowerPoint presentations, and development of a BioTrac website. Students will present their research at annual symposia held at the Museum. They will also serve as science explainers in the Museum's galleries, interpreting biomedical-related exhibits to the general public. During the summer before 12th grade, students will attend residential programs at University of Florida and Florida A&M University, gaining exposure to post-secondary programs leading to careers in biomedical research. Students in 11th and 12th grade will also be encouraged to participate in M-DCPS's Advanced Academic Internship Program, gaining up to three honors credits for work in institutions engaged in biomedical research. Following 12th grade, prior to beginning college, students will be placed in an eight-week summer internships at UM labs engaged in a broad spectrum of biomedical research. The Museum will disseminate students' research experiences and project findings through an BioTrac web page, ASTC and Upward Bound conferences and networks, and Museum and UM publications.
DATE: -