It is estimated that there could be 40 billion earth-sized planets orbiting in the habitable zones of stars in the Milky Way. Major advances in long range telescopes have allowed astronomers to identify thousands of exoplanets in recent decades, and the discovery of new exoplanets is a now a common occurrence. Public excitement for the discoveries grown alongside these discoveries, thus opening new possibilities for inspiring a new generation of scientists and engineers that may dream of one day visiting these planets. This project investigates the use of interactive, intelligent educational technologies to generate interest in STEM by allowing learners to explore and even create their own exoplanets. Research will occur across several informal learning contexts, including summer camps, after school programs, planetarium shows, and at home. The approach is based on the idea of "What if?"questions about Earth (e.g., "What if the Moon did not exist?"), designed to trigger interest in STEM and frame exploratory and elaborative discussions around hypothetical science questions that are subsequently linked to the search for habitable exoplanets. Learners are able to interact with and explore scientifically accurate simulations of alternative versions of Earth, while making observations and posing explanations for what they see. Technology-based informal learning experiences designed to act as triggers for and sustainment of interest in STEM have the potential to plug the leaky STEM pipeline, and thus have profound implications for the future of science and technology in the United States.
The project seeks to advance the science of designing technologies for promoting interest in STEM and informal astronomy education in several ways. First, the project will develop simulations for exploratory learning about astronomy and planetary science. These simulations will present hypothetical worlds based on what-if questions and feasible models of known exoplanets, thus giving learners a chance to better understand the challenges of finding a habitable world and learning about what is needed to survive there. Second, a new PBS NOVA Lab will be developed that will focus on Exoplanet education. This web-based activity has the potential to reach millions of learners and will help them understand how planets are formed and the requirements for supporting life. Learners who use the lab will have an opportunity to invent their own exoplanets and export them for first-person exploration. Third, researchers on the project will design and implement Artificial Intelligence-based pedagogical agents to support learning and promote interest. These agents will inhabit the simulations with the learner, acting as a coach and guide, and be designed to be culturally responsive and personalized based on learner preferences. Fourth, interactive exoplanet-focused planetarium shows, that will involve live interaction with simulations, will take place at the Fiske Planetarium (Boulder, CO). Finally, the project will develop a server-based infrastructure for tracking and supporting long term development of interest in STEM. This back-end will track fine-grained behaviors, including movement, actions, and communications in the simulations. Such data will reveal patterns about how interest develops, how learners engage in free-choice learning activities, and how they interact with agents and peers in computer simulations. A design-based research methodology will be employed to assess the power of these different experiences to trigger interest and promote learning of astronomy. A range of different pathways for interest in STEM will therefore be considered and assessed. Research will measure the power of these experiences to trigger interest in STEM and promote re-engagement over time. Innovation lies in the use of engaging and intelligent technologies with thought-provoking pedagogy as a method for extended engagement of diverse young learners in STEM. Project research and educational resources will be widely disseminated to researchers, designers developers and the general public via peer-reviewed research journals, conference presentations, informal STEM education networks of science museums, children's museums, Fab Labs, and planetariums, and public media such as public television's NOVA science program website.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
H Chad LaneNeil CominsJorge Perez-GallegoDavid Condon
A team of experts from five institutions (University of Minnesota, Adler Planetarium, University of Wyoming, Colorado State University, and UC San Diego) links field-based and online analysis capabilities to support citizen science, focusing on three research areas (cell biology, ecology, and astronomy). The project builds on Zooniverse and CitSci.org, leverages the NSF Science Gateways Community Institute, and enhances the quality of citizen science and the experience of its participants.
This project creates an integrated Citizen Science Cyberinfrastructure (CSCI) framework that expands the capacity of research communities across several disciplines to use citizen science as a suitable and sustainable research methodology. CSCI produces three improvements to the infrastructure for citizen science already provided by Zooniverse and CitSci.org:
Combining Modes - connecting the process of data collection and analysis;
Smart Assignment - improving the assignment of tasks during analysis; and
New Data Models - exploring the Data-as-Subject model. By treating time series data as data, this model removes the need to create images for classification and facilitates more complex workflows. These improvements are motivated and investigated through three distinct scientific cases:
Biomedicine (3D Morphology of Cell Nucleus). Currently, Zooniverse 'Etch-a-Cell' volunteers provide annotations of cellular components in images from high-resolution microscopy, where a single cell provides a stack containing thousands of sliced images. The Smart Task Assignment capability incorporates this information, so volunteers are not shown each image in a stack where machines or other volunteers have already evaluated some subset of data.
Ecology (Identifying Individual Animals). When monitoring wide-ranging wildlife populations, identification of individual animals is needed for robust estimates of population sizes and trends. This use case combines field collection and data analysis with deep learning to improve results.
Astronomy (Characterizing Lightcurves). Astronomical time series data reveal a variety of behaviors, such as stellar flares or planetary transits. The existing Zooniverse data model requires classification of individual images before aggregation of results and transformation back to refer to the original data. By using the Data-as-Subject model and the Smart Task Assignment capability, volunteers will be able to scan through the entire time series in a machine-aided manner to determine specific light curve characteristics.
The team explores the use of recurrent neural networks (RNNs) to determine automated learning architectures best suited to the projects. Of particular interest is how the degree to which neighboring subjects are coupled affects performance. The integration of existing tools, which is based on application programming interfaces (APIs), also facilitates further tool integration. The effort creates a citizen science framework that directly advances knowledge for three science use cases in biomedicine, ecology, and astronomy, and combines field-collected data with data analysis. This has the ability to solve key problems in the individual applications, as well as benefiting the research of the dozens of projects on the Zooniverse platform. It provides benefits to researchers using citizen scientists, and to the nearly 1.6 million citizen scientists themselves.
This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Research on Learning in Formal and Informal Settings, within the NSF Directorate for Education and Human Resources.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The Adler Planetarium, Johns Hopkins University, and Southern Illinois University-Edwardsville are investigating the potential of online citizen science projects to broaden the pool of volunteers who participate in analysis and investigation of digital data and to deepen volunteers' engagement in scientific inquiry. The Investigating Audience Engagement with Citizen Science project is administering surveys and conducting case studies to identify factors that lead volunteers to engage in the astronomy-focused Galaxy Zoo project and its Zooniverse extensions. The project is (1) identifying volunteers' motivations for joining and staying involved, (2) determining factors that influence volunteers' movement from lower to higher levels of involvement, and (3) designing features that influence volunteer involvement. The project's research findings will help informal science educators and scientists refine existing citizen science programs and develop new ones that maximize volunteer engagement, improve the user experience, and build a more scientifically literate public.
We have created an instrument to measure the prevalance of various motivations in a population of volunteers in an online citizen science project. Our project is Zooniverse (www.zooniverse.org), a collection of citizen science projects that have grown out of the Galaxy Zoo website. The instrument is based on a theoretical model of motivation, which is described in the attached document.
DATE:
TEAM MEMBERS:
Jordan RaddickKaren CarneyJason ReedAndrea Lardner
NASA's Universe of Learning provides resources and experiences that enable diverse audiences to explore fundamental questions in astronomy, experience how science is done, and discover the universe for themselves. Using its direct connection to science and science experts, NASA's Universe of Learning creates and delivers timely and authentic resources and experiences for youth, families, and lifelong learners. The goal is to strengthen science learning and literacy, and to enable learners to discover the universe for themselves in innovative, interactive ways that meet today's 21st century needs. The program includes astronomical data tools, multimedia resources, exhibits and community programs, and professional learning experiences for informal educators. It is developed through a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, the Jet Propulsion Laboratory, the Smithsonian Astrophysical Observatory, and Sonoma State University.
DATE:
-
TEAM MEMBERS:
Denise SmithGordon SquiresKathy LestitionAnya BifernoLynn Cominsky
In 2014 the National Aeronautics and Space Administration (NASA) awarded a Competitive Program for Science Museums, Planetariums and NASA Visitor Centers Plus Other Opportunities grant to Space Science Institute’s (SSI) National Center for Interactive Learning (NCIL) called From Our Town to Outer Space (FOTOS). The three-year grant brought STEM learning experiences around NASA disciplines to six public libraries through a traveling exhibit called Discover NASA, associated programming for library patrons, training, resources, and a virtual community of practice for library staff and others who
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The team of Associated Universities Inc. (AUI), Michigan State University (MSU), California Academy of Science (the Academy), Astronomical Society of the Pacific (ASP), and Association of Universities for Research in Astronomy (AURA), will bring together experts in astronomy, STEM education, and planetarium show production. This work will tell the story of the people and places that make "big astronomy" possible, particularly the search for exoplanets and understanding of how planets form. The show and related materials will be presented in dozens of venues around the USA and internationally. Through a planetarium show and learning experiences that extend beyond the theater, the team will take visitors to extreme sites of the NSF ground-based observatories on the mountains of Chile and meet the diverse people who enable amazing discoveries in astronomy. In addition, the project develops the Dome+ model, which ensures engagement does not end with the planetarium. Dome+ will include additional content, weekly virtual sessions with STEM professionals, and a suite of closely linked outreach activities. Dome+ will serve as a model to extend engagement and increase the impact of future planetarium shows. Project goals include 1) increasing awareness of the research in astronomy being made at the NSF-funded observatories in Chile, 2) increasing awareness and interest in diverse STEM career opportunities at large observatories and related institutions in the USA, 3) increasing knowledge of science enabled by big observatories, 4) increasing Latinx perceptions as someone who can have a career at a major observatory, and 5) developing the Dome+ model and identify best practices for implementation. Iterative and summative evaluation of the project by collaborators at MSU will address four main questions: How does the Dome+ model affect visitors' perceptions of diversity of careers in STEM? How does the Dome+ model affect visitors' interest and understanding of Chile as an ideal observing location for astronomy? How does the Dome+ model support visitors' interest and understanding of the science of exoplanets? How do planetariums implement Dome+, and how does implementation affect the outcomes for visitors? The impact assessment component of this project takes places in four phases. The goals of the first phase are to leverage the expertise of the research team to inform the creation of the planetarium show and to set up a robust research agenda to be achieved in Years 2-4 of the project. The goals of the second phase are to collect preliminary data from visitors on their responses to planetarium show content and to use this information to advise on edits to the show and to develop the content and format of the web-portal and educational materials. The goal of the third phase is to then collect data on how effectively the technology-rich environments of the three components of the Dome+ model (planetarium show, web-portal, educational materials) work in concert to reach the intended goals of changing visitors' perceptions of diversity in STEM, engaging visitors with astronomy content on exoplanets, and exposing visitors to the wonders of astronomy research in Chile. The goal of the fourth phase is to perform data analysis, synthesize findings and make recommendations for future implementations of the Dome+ model for practitioners. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.
In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).
Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
Physical science and engineering remain the least diverse of all STEM fields---with regard to women, underrepresented minorities, and persons with disabilities---across all levels of STEM education and training. SCI-STEPS is an NSF INCLUDES Design and Development Launch Pilot that will address this persistent challenge by developing a complete end-to-end pipeline (or system of pathways) from the beginning of college to the PhD, and then into the workforce. Many isolated efforts to broaden participation have shown promise, but they have not produced big enough impact. SCI-STEPS represents a concerted set of coordinated interventions---consciously facilitated, systemically linked, and purposefully disseminated. SCI-STEPS represents a broad regional network among major research universities, Historically Black Colleges and Universities, comprehensive universities, community colleges, national labs, and major scientific organizations. The goal of the network is to ensure that underrepresented individuals in the physical sciences and engineering can get from their starting point in STEM higher education---freshmen at 2-year or 4-year college---through the higher education pathways leading to an appropriate terminal degree and employment in the STEM workforce.
Women, underrepresented minorities, and persons with disabilities collectively represent the majority of college-age individuals entering higher education with an expressed interest in physical science and engineering. A growing body of research indicates that academic and social integration may be even more influential than academic abilities for retention of students. Thus, interventions aimed at stemming the losses of these individuals must ultimately be aimed at changing the system---including unwelcoming institutional climates, racial/ethnic/gender stereotyping, a lack of mentors with whom to identify, and evaluation methods that emphasize conformity over individual capabilities---rather than changing the individual. The SCI-STEPS pilot focuses effort on institutional readiness for implementation of best practice interventions at four key junctures: (i) college freshman to sophomore; (ii) undergraduate to graduate; (iii) PhD to postdoc; and (iv) postdoc to workforce.The pilot will proceed in three steps: (1) a planning phase, (2) development of an initial end-to-end pathways model with four Juncture Transition teams, and (3) scale-up of the SCI-STEPS "network of networks" with all initial partners. By addressing these objectives through a collective impact framework and embedded research, this pilot will demonstrate how best-practice interventions at each pathway juncture can be dovetailed and scaled up across a broad range of institutional types and across a large but distinct geographical area. Addressing these objectives will thus also serve to advance Broadening Participation efforts at a national scale, by suggesting the forms of institutional partnerships and best-practices that may inform other alliances in other STEM disciplines and/or different regional areas.
DATE:
-
TEAM MEMBERS:
Keivan StassunNicole JosephKelly Holley-BockelmannWilliam RobinsonRoger Chalkley
This study explored how different presentations of an object in deep space affect understanding, engagement, and aesthetic appreciation. A total of n = 2,502 respondents to an online survey were randomly assigned to one of 11 versions of Cassiopeia A, comprising 6 images and 5 videos ranging from 3s to approximately 1min. Participants responded to intial items regarding what the image looked like, the aesthetic appeal of the image, perceptions of understanding, and how much the participant wanted to learn more. After the image was identified, participants indicated the extent to which the
DATE:
TEAM MEMBERS:
Lisa SmithKimberly ArcandRandall SmithJay BookbinderJeffrey Smith
This is a book review of "Cosmos and the Rhetoric of Popular Science" by K. Shroeder Sorensen. Shroeder Sorensen analyses in depth the close relationship of the TV-series Cosmos [1980] with the popular culture, in its broadest sense, at the time of its release. The novel application of Fantasy-Theme analysis to the rhetorical vision of the series reveals how it is the product of a very careful and successful design. The book also compares the original series with its 2014 reboot Cosmos: A Spacetime Odyssey [2014].
"Black Sun" is a full-length documentary film focusing on the life and research of two African American solar astrophysicists: Dr. Hakeem Oluseyi of the Florida Institute of Technology and Dr. Alphonse Sterling of the NASA Marshall Space Flight Center. Black Sun depicts underrepresented minority scientists in ways that challenge common preconceptions, and will inspire young people (particularly minorities) to consider STEM fields as a viable and exciting career option. In particular, the film shows the lives of the scientists, the scientists taking scientific observations and doing analysis, and discussing their results. Black Sun is centered on the two solar eclipses this year (2012): The May 20 annular eclipse and the November 13-14 total eclipse. This NSF RAPID grant funds the filming of the total solar eclipse in Cairns, Australia, where Drs. Sterling and Oluseyi and their team of students will conduct measurements focused on studying the extended solar atmospheric plasma.
The primary broader impacts goal is to increase minority participation in STEM fields. Black Sun will be "advancing discovery and understanding while promoting teaching, training and learning," by showing both the science and the personal aspects of minority astrophysicists. Dissemination will be done via screenings in academic settings (particularly minority-serving institutes), entry into film festivals, and promotion to science TV programs. We have already partnered with several HBCUs to screen "Black Sun".