Skip to main content

Community Repository Search Results

resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt
resource research Media and Technology
Dialogical models in science communication produce effective and satisfactory experiences, also when hard sciences (like astrophysics or cosmology) are concerned. But those efforts to reach the public can be of modest impact since the public is no longer (or not sufficiently) interested in science. The reason of this lack of interest is not that science is an alien topic, but that contemporary science and technology have ceased to offer a convincing model for the human progress.
DATE:
TEAM MEMBERS: Stefano Sandrelli
resource research Media and Technology
Through the years, Majorana's life - and his mysterious disappearance in particular - inspired manifold representations. The wide range of links to science, philosophy and literature have allowed deep reflections crossing the borders of genre: from theatre to fiction, from essays to novels and cartoons. Reconstructing the character of Majorana by thinking back to all the interpretations he has been given allows us to place him in a wider and more organic context, which goes beyond the functional aspects of fiction. In this wider prospective, we can clearly see why the still unresolved Majorana
DATE:
TEAM MEMBERS: Frencesco Scarpa
resource research Media and Technology
According to Einstein’s renowned declaration, for those who believe in physics – or, more precisely, in its capability to offer a “scientific” representation of the world – the distinction between present, past and future is just “an illusion, though obstinate”. If we consider an effective analogy by Mauro Dorato, we can state that those who agree with the famous German scientist will recognize in the present, past and future a relationship very similar to that between “here” and “somewhere else” – in other words, the present is just a located moment and has no privileged status. In other
DATE:
TEAM MEMBERS: Ivan Populizio
resource research Public Programs
This paper describes how a universal language for notating dance and, more generally, movement was elaborated, known as "Kinetography Laban", or rather "Labanotation". It was devised by choreographer and movement theorist Rudolf von Laban, who outlined it for the first time in 1928, in the journal Schrifttanz. His system differs from precedent notation systems in that Labanotation is rigorous and universal, as it is based not on one particular style or technique but on the general of kinetics underlying human motion. Its geometrical and abstract symbols also free it from language constraints
DATE:
TEAM MEMBERS: Silvana Barbacci
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the Fusion Science Theater (FST) model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics.
DATE:
TEAM MEMBERS: Holly Walter Kerby
resource project Public Programs
The Fusion Science Theater National Training and Dissemination Program builds on the success of the Fusion Science Theater (FST) planning grant (DRL 07-32142). Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the FST model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics. The primary target audience is children aged 4-11, while undergraduate chemistry students, faculty, and formal and informal educators comprise the secondary professional audience. The project will result in the development of a robust, creative, and highly visible national dissemination program. The National Training and Dissemination Program includes three deliverables. First, a Distance Performance Training Program will be developed to teach groups of undergraduate students, faculty, and educators how to perform FST Science Investigation (SI) Shows. The Training Program includes a Performance Training Package and a 3-day Performance Training Workshop. The Performance Training Package will be comprised of training videos, performances videos, scripts, rehearsal schedules, and training exercises. These materials will be pilot tested while training representatives of five groups from around the country to perform SI Shows during the Performance Training Workshop at Madison Area Technical College in summer 2012. Participants will be selected from ACS undergraduate groups, outreach specialists, and museum professionals. Workshop participants then return to their home institutions and lead their groups through the improved Performance Training Package delivered via Moodle, with support from FST team members and social networking tools. The second deliverable is the FST Methods Workshop. The Methods Workshop is designed to teach formal and informal educators to use selected methods (Investigation Question, Embedded Assessment, and Act-It-Out) in their outreach efforts and classroom teaching. Four workshops will be presented at national meetings and at the invitation of colleges, universities, and science centers. Follow-up with workshop participants will be mediated through an online forum to encourage experimentation, modification, and dissemination of a second generation of FST activities. The final project deliverable is the development and implementation of a Promotion and Recruitment Plan to connect professional audiences with FST. The Distance Performance Training Program and workshops will be evaluated using mixed methods, while embedded assessment will be utilized to measure the impact on youth participants attending SI shows to determine the overall effectiveness the Distance Performance Training. This project is designed to have important impacts on STEM education and society. The proposed dissemination program brings innovative models and methods into the hands of informal science education practitioners who can use them to engage local audiences and enhance their own teaching and communication practices. Finally the project offers likely benefits for society through the creation and dissemination of innovative practices to combat science illiteracy, diminishing pools of scientists and engineers, lack of understanding about the nature of science, and the achievement gap that exacerbates these problems. This project could be transformative in informal science education as SI Shows use theater to engage audiences in multiple aspects of science learning. It is anticipated that this project will reach up to 2,500 individuals in public and professional audiences.
DATE: -
resource project Public Programs
Madison Area Technical College will refine and evaluate the effectiveness of Fusion Science Theater (FST), a combination of theater, science demonstrations, and participatory components, as an ISE teaching model, to test its transferability through development and trials of an exportable version (Science-in-a-Box), and to recruit appropriate partners nationally in preparation for a larger scale implementation and evaluation. A Fusion Science Theater event utilizes the collaborative effort of applied expertise in science, theater and education. These events support playful interactions as characters engage the emotions of the audience. The Act-It Out sequences invite children and parents to become involved in modeling scientific concepts, thus creating an environment where learning is the product of social interaction and kinesthetic, affective and interpersonal learning. To provide proof-of-concept that this a transferable model, an independent, interdisciplinary team from the University of Wisconsin, Madison Biotechnology Center will produce their own FST event that will be evaluated and compared to an existing FST program. The Madison Children's Museum will partner as a venue for the event and provide expertise in the planning process. The ultimate project resulting from this planning would include workshops to train collaborative teams from around the country in the principles and practices of FST, promotion of cross-disciplinary collaboration among professionals, and honing of an evaluation design for FST events. The trained teams would then produce FST events that reach children, their parents and the general public. The planning grant project design includes activities necessary to further test, verify and document Fusion Science Theater events. It provides a proof of concept of model effectiveness and transferability. It also initiates, develops and assesses ways to train other groups to implement the model and publicizes the model to national professional networks to spread the work and recruit site teams.
DATE: -
TEAM MEMBERS: Holly Kerby
resource project Public Programs
The World Biotech Tour (WBT) is a multi-year initiative that will bring biotechnology to life at select science centers and museums worldwide. The program, supported by the Association of Science-Technology Centers (ASTC) and Biogen Foundation, is scheduled to run from 2015-2017, with the 2015 cohort in Belgium, Japan, and Portugal. The WBT will increase the impact and visibility of biotechnology among youth and the general public through hands-on and discussion-led learning opportunities. Applications are now open for the 2016 cohort! Learn more and submit an application at http://www.worldbiotechtour.org/become-a-stop
DATE: -
TEAM MEMBERS: Association of Science-Technology Centers Carlin Hsueh
resource evaluation Public Programs
Choreographed by Liz Lerman and the Dance Exchange, The Matter of Origins is a contemporary dance exploring historical perspectives and cutting edge physics about our beginnings. In Act One, audience members watch as science concepts are translated into images, music, and dance. Dancers portray ideas such as the complexity of measurement, the ways atomic particles interact, and the origins of the universe. Science-themed, multi-media experiences including images from the Hubble space telescope, CERN, and replications of atomic bomb explosions accompany the dancing. In Act Two, audience members
DATE:
TEAM MEMBERS: Liz Lerman Diane Doberneck John Schweitzer Paula Miller John Borstel