Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The National Writing Project (NWP) is collaborating with the Association of Science-Technology Centers (ASTC) on a four-year, full-scale development project that is designed to integrate science and literacy. Partnerships will be formed between NWP sites and ASTC member science centers and museums to develop, test, and refine innovative programs for educators and youth, resulting in the creation of a unique learning network. The project highlights the critical need for the integration of science and literacy and builds on recommendations in the Common Core State Standards and the National Research Council's publication, "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The content focus includes current topics in science and technology such as environmental science, sustainability, synthetic biology, geoengineering, and other subjects which align with science center research and exhibits. The project design is supported by a framework that incorporates a constructivist/inquiry-based approach that capitalizes on the synergy between rigorous science learning and robust literacy practices. Project deliverables include a set of 10 local partnership sites, professional development for network members, a project website, and an evaluation report highlighting lessons learned. Partnership sites will be selected based on interest, proximity, history, and expertise. Two geographically and demographically diverse cohorts, consisting of five partnerships each will be identified in Years 2 and 3. Each set of partners will be charged with creating a comprehensive two-year plan for science literacy activities and products to be implemented at local sites. It is anticipated that the pilot programs may result in the creation of new programs that merge science and writing, integrate writing into existing museum science programs, or integrate science activities into existing NWP programs. Interest-driven youth projects such as citizen science and science journalism activities are examples of programmatic approaches that may be adopted. The partners will convene periodically for planning and professional development focused on the integration of science and literacy for public and professional audiences, provided in part by national practitioners and research experts. A network Design Team that includes leadership representatives from NWP, ASTC, and the project evaluator, Inverness Research, Inc., will oversee project efforts in conjunction with a national advisory board, while a Partnership Coordinator will provide support for the local sites. Inverness Research will conduct a multi-level evaluation to address the following questions: -What is the nature and quality of the local partner arrangements, and the larger network as a whole? -What is the nature and quality of the local science literacy programs that local partners initiate, and how do they engage local participants, and develop their sense of inquiry and communication skills? First, a Designed-Based Implementation Research approach will be used for the developmental evaluation to assess the implementation process. Next, the documentation and portrayal phase will assess the benefits to youth, educators, institutions, and the field using surveys, interviews, observations of educators, and reviews of science communication efforts created by youth. Finally, the summative evaluation includes a comprehensive portfolio of evidence to document the audience impacts and an independent assessment of the project model by an Evaluation Review Board. This project will result in the creation of a robust learning community while contributing knowledge and lessons learned to the field about networks and innovative partnerships. It is anticipated that formal and informal educators will gain increased knowledge about science and literacy programs and develop skills to provide effective programs, while youth will demonstrate increased understanding of key science concepts and the ability to communicate science. Programs created by the local partnerships will serve approximately 650 educators (450 informal educators and 200 K-12 teachers) and 500 youth ages 9-18. Plans for dissemination, expansion, and sustainability will be undertaken by the sub-networks of the collaborating national organizations drawing on the 350 ASTC member institutions and nearly 200 NWP sites at colleges and universities.
DATE: -
resource project Media and Technology
This pathways project would refine and test a game based on the Kinect technology gaming tool to teach seismology concepts in an informal education setting and how they apply to phenomenon in other STEM fields. The game will be developed as a companion tool to the "Quake Catcher Network" a low-cost network of seismic sensors in schools, homes and offices world-wide and tie-ins with seismology programs such as the great California ShakeOut with a participant base of 8.6 million. The project design would select three new learning modules, chosen by a group of scientists and educators, to incorporate into the game and evaluate player experience and knowledge gain. The activities will be conducted at a partner test site, an aquarium, frequented by area youth 8 - 12 years old. The focus of the effort is to add to the knowledge of how gaming can be used effectively in informal learning environments The game places the player as a scientist, allowing the player to make decisions about seismic station deployment strategies following an earthquake, installing the sensors and monitoring incoming data. The game has levels of difficulty and players accrue points by acting swiftly and correctly. Learning goals for the project include making abstract math concepts understandable; involve participants in data collection and the process of scientific investigation, plus demonstrate how scientists and mathematicians use tools of their fields to address real-world issues.
DATE: -
TEAM MEMBERS: Deborah Kilb
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff
resource project Media and Technology
Kinetic City After School is a project supported by a prior NSF award that has produced over 80 activities in areas typical of after school activities such as computer games/simulations, hands-on activities, active play, and art and writing. This pathways project, KC Empower, will redesign and test five activities of the 80 activities currently developed by Kinetic City using a new approach to increase the representation of children and youth with disabilities in informal science settings. The project will test how universal design principles can be integrated with new technologies, not available when most after school STEM content was created, to address the needs of students with disabilities. The technologies used in the redesign include advanced mobile platforms and applications; search engines that sift through audio, image and video files; gaming input devices that respond to body movements; and information restructuring that allows multiple representations of content. The project will test how universal design guidelines will work with new technologies, in the short-term providing hands-on activities more accessible to students with disabilities, while increasing access for all students. The project is expected to lead to a full scale development project that will update all modules in Kinetic City After School. The target audience is 3rd - 5th grade students. The hypothesis of the project is that designing for disability can strengthen activities designed to increase science knowledge. Rather than making accommodations for persons with disabilities, it is the environment and design that are disabled, and it is better educational practice to rethink the activity from the point of view of all learners, including those with disabilities. Thus the use of universal design will address how best to present material for all users while influenced by the challenges presented by disabled users. The project includes the Coalition for Science After School, the Center for Applied Special Technology and the Afterschool Alliance.
DATE: -
TEAM MEMBERS: Robert Hirshon Laureen Summers
resource project Media and Technology
The Virginia Institute of Marine Science (VIMS) and The Watermen's Museum, Yorktown, VA, will produce an underwater robotics research and discovery education program in conjunction with time-sensitive, underwater archeological research exploring recently discovered shipwrecks of General Cornwallis's lost fleet in the York River. The urgency of the scientific research is based upon the dynamic environment of the York River with its strong tidal currents, low visibility, and seasonal hypoxia that can rapidly deteriorate the ships, which have been underwater since 1781. Geophysical experts believe that further erosion is likely once the wrecks are exposed. Given the unknown deterioration rate of the shipwrecks coupled with the constraints of implementing the project during the 2011-2012 school-year, any delays would put the scientific research back at least 18 months - a potentially devastating delay for documenting the ships. The monitoring and studying of the historic ships will be conducted by elementary through high school-aged participants and their teachers who will collect the data underwater through robotic missions using VideoRay Remotely Operated Vehicles (ROVs) and a Fetch Automated Underwater Vehicle (AUV) from a command station at The Watermen's Museum. Students and teachers will be introduced to the science, mathematics, and integrated technologies associated with robotic underwater research and will experience events that occur on a real expedition, including mission planning, execution, monitoring, and data analysis. Robotic missions will be conducted within the unique, underwater setting of the historical shipwrecks. Such research experiences and professional development are intended to serve as a key to stimulating student interest in underwater archeological research, the marine environment and ocean science, advanced research using new technologies, and the array of opportunities presented for scientific and creative problem solving associated with underwater research. A comprehensive, outcomes-based formative and summative, external evaluation of the project will be conducted by Dr. L. Art Safer, Loyola University. The evaluation will inform the project's implementation efforts and investigate the project's impact. The newly formed partnership between the Waterman's Museum and VIMS will expand the ISE Program's objectives to forge new partnerships among informal venues, and to expand the use of advanced technologies for informal STEM learning. Extensive public dissemination during and after the project duration, includes but is not limited to, hosting an "Expedition to the Wrecks" web portal on the VIMS BRIDGE site for K-12 educators providing real-time results of the project and live webcasts. The website will be linked to the education portal at the Association for Unmanned Vehicle Systems International, the world's largest organization devoted to promoting unmanned systems and to the FIRST Robotics community through the Virginia portal. The website will be promoted through scientific societies, the National Marine Educators Association, National Science Teachers Association, and ASTC. Links will be provided to the Center for Archeological Research at the College of William and Mary and the Immersion Presents web portal--consultants to Dr. Bob Ballard's K-12 projects and JASON explorations. The NPS Colonial National Historic Park and the Riverwalk Landing will create public exhibits about the shipwreck's archeological and scientific significance, and will provide live observation of the research and the exploration technologies employed in this effort.
DATE: -
TEAM MEMBERS: Mark Patterson
resource project Public Programs
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
DATE: -
TEAM MEMBERS: Tara Chklovski Toby Cumberbatch Shrikanth Narayanan Doe Mayer Jed Dannenbaum Harouna Ba Molly Porter Preeti Gupta Sylvia Perez
resource project Exhibitions
The STAR Library Education Network: a hands-on learning program for libraries and their communities, (STAR_Net for short) is led by the National Center for Interactive Learning (NCIL) at the Space Science Institute (PI: Paul Dusenbery). STAR stands for Science-Technology, Activities and Resources. Team members include NCIL staff, the American Library Association (ALA), Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP). STAR_Net is developing two comprehensive, informal education programs: Discover Earth and Discover Tech. The project also includes a comprehensive evaluation plan and a research component that explores how public libraries can serve as a STEM learning center in rural, underserved communities. STAR_Net is supported through a grant from the National Science Foundation. The STAR_Net project includes two traveling library exhibits: Discover Earth: A Century of Change and Discover Tech: Engineers Make a World of Difference. The Discover Earth exhibition features interactive, multimedia displays that allow exhibit visitors to interact with digital information in a dynamic way, encouraging new perspectives on our planet. Discover Tech introduces the many extraordinary ways that engineers solve problems to help people and societies around the world. Similar to a science center experience, visitors and families will be able to explore and tinker with their own engineering solutions. A number of STEM activities and resources will be developed by project staff and by other organizations to help librarians and community partners offer a wide variety of programs for their patrons. Besides the traveling exhibits and programs, STAR_Net also includes library staff training (online and in-person) and a Community of Practice (CoP) for librarians (including non-host librarians) to interact and partner with STEM professionals and organizations. NCI's Kate Haley Goldman and staff from Evaluation and Research Associates are conducting the project's evaluation.
DATE: -
TEAM MEMBERS: Paul Dusenbery Stephanie Shipp Lisa Curtis
resource project Media and Technology
Researchers at the American Association of Variable Star Observers, the Living Laboratory at the Boston Museum of Science, and the Adler Planetarium are studying stereoscopic (three-dimensional or 3D) visualizations so that this emerging viewing technology has an empirical basis upon which educators can build more effective informal learning experiences that promote learning and interest in science by the public. The project's research questions are: How do viewers perceive 3D visualizations compared to 2D visualizations? What do viewers learn about highly spatial scientific concepts embedded in 3D compared to 2D visualizations? How are viewers\' perceptions and learning associated with individual characteristics such as age, gender, and spatial cognition ability? Project personnel are conducting randomized, experimental mixed-methods research studies on 400 children and 1,000 adults in museum settings to compare their cognitive processing and learning after viewing two-dimensional and three-dimensional static and dynamic images of astronomical objects such as colliding galaxies. An independent evaluator is (1) collecting data on museum workers' and visitors' perceived value of 3D viewing technology within museums and planetariums and (2) establishing a preliminary collection of best practices for using 3D viewing technology based on input from museum staff and visitors, and technology creators. Spatial thinking is important for learning many domains of science. The findings produced by the Two Eyes, 3D project will researchers' understanding about the advantages and disadvantages of using stereoscopic technology to promote learning of highly spatial science concepts. The findings will help educators teach science in stereoscopic ways that mitigate problems associated with using traditional 2D materials for teaching spatial concepts and processes in a variety of educational settings and science content areas, including astronomy.
DATE: -
TEAM MEMBERS: Aaron Price Arne Henden Mark SubbaRao Jennifer Borland Becki Kipling
resource project Public Programs
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE: -
TEAM MEMBERS: Loren Thompson Jeremy Babendure Ben Wiehe
resource project Media and Technology
In partnership with the University of Pennsylvania's Graduate School of Education, The Franklin Institute Science Museum will develop, test, and pilot an exportable and replicable cyberlearning exhibit using two cutting edge technologies: Augmented Reality (AR) and Virtual Reality (VR). The exhibit's conceptualization is anchored in the learning research vision of the NSF-funded workshop Cyberinfrastructure for Education and Learning for the Future (Computing Research Association, 2005). The incorporation of VR and AR technologies into the Franklin Institute's electricity and Earth science exhibits is an innovation of traditional approaches to hands-on learning and will improve the quality of the learning experience for the primary audience of families with children and elementary school groups. The project has implications for future exhibit development and more broadly, will provide new research on learning on how to incorporate cyberlearning efforts into traditional exhibits. Fifteen participating exhibit developers across the ISE field will assist in the evaluation of the new exhibit; receive training on the design and development of VR and AR exhibits for their institutions; and receive full access to the exhibit's new software for implementation at their informal learning sites. The technology applications will be developed by Carnegie Mellon University's Entertainment Technology Center--leaders in the field in Virtual Reality design and development. Front-end and formative evaluation will be overseen internally by the Franklin Institute. The Institute for Learning Innovation will conduct the summative evaluation. Research will be conducted by the University of Pennsylvania's Graduate School of Education on the effects of AR and VR technologies on exhibit learning.
DATE: -
TEAM MEMBERS: Steven Snyder Karen Elinich Susan Yoon
resource project Media and Technology
The Louisiana State Museum and Tulane University/Xavier University Center for Bioenvironmental Research and the University of Rhode Island Graduate School of Oceanography, along with several other research collaborators, designers, evaluators, and the Times-Picayune newspaper are partnering to develop a multi-pronged approach on educating the general public, school children, teachers and public officials on the STEM-related aspects of Hurricane Katrina and its implications for the future of New Orleans and other parts of the country. The major products will be an 8,500 square-foot semi-permanent exhibit, smaller exhibits for Louisiana regional libraries, a comprehensive Web site on hurricanes, a set of studies on informal learning, a case study for public officials about the relevance of science research to policy and planning, teacher workshops, and a workshop for interested exhibit designers from around the country. This project advances the field of informal science education by exploring how museums, universities, and their communities can work together to provide meaningful learning experiences on STEM topics that are critical to solving important community and national issues.
DATE:
TEAM MEMBERS: Karen Leathem Douglas Meffert
resource project Public Programs
Math off the Shelf (MotS) was designed to help those who work in public libraries put math into what they do with grades K-6 children and their families. Public libraries exist in virtually every community in the nation, and increasingly, families rely on them as a free, safe place for children to spend time in the absence of other care. As such, they are an ideal venue for reaching a large and diverse population with math. MotS has: (1) developed research-based English/Spanish materials for informal educators working in public libraries, available for free online (2) supported implementation and institutionalization at libraries across the nation (3) engaged informal educators working in libraries in conducting outreach via state and national library association meetings, webinars, and community and youth agencies (4) conducted evaluation on project impact, as described in the summative evaluation report attached. Dissemination to professional communities will constitute the remaining project work. External evaluation, conducted by Char Associates, identified dramatic changes in attitudes about math and its role in the library, in the amount of math that librarians offer to children and families, and in librarians' communication about math with patrons and peers. Development partners include the library systems of Queens NY, San Jose CA, St Louis MO, Westchester County NY, and dozens of libraries in AZ, CT, FL, and MA.
DATE:
TEAM MEMBERS: Marlene Kliman