In recent years, transmedia has come into the spotlight among those creating and using media and technology for children. We believe that transmedia has the potential to be a valuable tool for expanded learning that addresses some of the challenges facing children growing up in the digital age. Produced by the USC Annenberg Innovation Lab and the Joan Ganz Cooney Center, this paper provides a much-needed guidebook to transmedia in the lives of children age 5-11 and its applications to storytelling, play, and learning. Building off of a review of the existing popular and scholarly literature
DATE:
TEAM MEMBERS:
Becky Herr-StephensonMeryl AlperErin Reilly
Many science communication activities identify children as their main target. There are several reasons for this, even if, quite often, they are not expressed explicitly, as if children were a somehow “natural” public for science. On the contrary, we can observe a high level of complexity in the children agenda to engage with science, and in the science institution agendas for targeting children. But this does not seem to be followed but the same level of complexity in devising science engagement activities for children. The profound transformation of the scope and understanding of science
In the last two years SISSA Medialab designed, tested and evaluated two projects aiming at empowering children (in one case) and teenagers (in the other) to act as science journalists in order to promote a personal, critical attitude towards science and technology. The two groups produced a paper magazine and a blog, respectively, in a participatory process, in which adults acted as facilitators and experts on demand, but the youths were the leaders and owners of the products. Special care was taken to ensure inclusiveness, by involving in the project children and teenagers from any social
Listening to and empowering children is a main objective of the EU project SIS Catalyst – Children as Change Agents for Science in Society. Within this frame, a training workshop was held with researchers from the University Innsbruck (Austria) who are involved in the children’s University Junge Uni Innsbruck. We analysed the discussions of the scientists about the reasons why they engage in science in society activities, and why they think that children are interested in participating in such activities, and we compared these outcomes with similar discussions carried out by children in the
Children Universities are an emerging approach and acknowledged example of successful science communication for and with children. They represent in fact a scheme to implement science in society and society in science. Since its beginning around 2003 to its development into a global movement, the children university approach has also evolved new questioning, beyond proposing an opportunity for young people to meet the university world. Can Children’s Universities help higher education and research institutions to recognize children as a relevant dialogue group, and at the same time to be more
Children’s issues have become a greater priority on political agendas since the UN General Assembly adopted the Convention on the Rights of the Child (UNCRC). Each government has agreed to ensure that all those working with and for children understand their duties in relation to upholding children’s rights including the obligation to involve children in decisions that affect them (Article 12). Respecting children’s views is not just a model of good pedagogical practice, but a legally binding obligation. However, there is a limited awareness of Article 12, and how to actualise it. While many
In the editorial of this issue of JCOM, we underline how children are on one hand one of the main target group for science communication, and on the other hand a largely excluded group in the shift from a linear diffusion model to a dialogic model of science communication. In this series of comments, stimulated by the EU - FP7-Science in society project `SiS-Catalyst - 2013 children as change agents for science in society' (a four year programme aimed at crossing the science in society and the social inclusion agendas), we would like to explore methods and approaches that can ensure that, in
DATE:
TEAM MEMBERS:
Matteo MerzagoraTricia Alegra Jenkins
What can a visually impaired student achieve in art education? Can visually impaired students teach sighted students about elements of perception that sighted students would not normally consider? Are the legal moves towards rights to equal access for visually impaired people useful in asserting that visually impaired students can gain as much from gallery exhibits as sighted students can? In this article, these questions are studied in a practice report of a course involving visually impaired and sighted students working in groups, studying in a museum and creating art work at schools for the
This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was assessed. Prior research has predominately examined relationships and roles of groups of teachers and informal educators in the museum setting (Tal et al. in Sci Educ 89:920–935, 2005 ; Tal and Steiner in Can J Sci Math Technol Educ 6:25–46, 2006 ; Tran 2007
Many of the biggest problems facing the United States and the world require engineering expertise to solve: climate change, feeding a growing population, energy independence, access to clean water, crumbling infrastructure, and others. And with global economic competitiveness inextricably linked to innovation, employers across a wide range of engineering and non-engineering fields such as health care, management, and marketing are seeking employees with engineering knowledge and related skills. These skills include the ability to creatively and systematically solve ill-defined problems
DATE:
TEAM MEMBERS:
Community for Advancing Discovery Research in Education (CADRE)
Magnolia Consulting, LLC conducted a formative and summative evaluation to examine public perceptions of the utility and quality of two labs/exhibits within the North Carolina Museum of Natural Sciences Natural World Investigate Lab, Biofuels and Science of Scent. Appendix includes survey.
DATE:
TEAM MEMBERS:
North Carolina State Museum of Natural ScienceMary Styers
Research in experimental and developmental psychology, cognitive science, and neuroscience, suggests that tool fluency depends on the merging of perceptual and motor aspects of its use, an achievement we call perceptuomotor integration. We investigate the development of perceptuomotor integration and its role in mathematical thinking and learning. Just as expertise in playing a piano relies on the interanimation of finger movements and perceived sounds, we argue that mathematical expertise involves the systematic interpenetration of perceptual and motor aspects of playing mathematical
DATE:
TEAM MEMBERS:
Ricardo NemirovskyMolly KeltonBohdan Rhodehamel