The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
This project will establish a new spherical display system exhibit. The Hatfield Marine Science Visitor Center (Newport, Oregon) will acquire and install a 3 ft. Magic Planet as part of a larger interactive data visualization exhibit. Pacific Northwest regional data sets will complement NOAA global data to serve as a model education program. Specific focus areas include coastal climates, hypoxia/dead zones, algal blooms, and/or aquatic invasive species. The Principle Investigator for this project have unique expertise in K-12 education, teacher professional development, curriculum development and evaluation, particularly in free-choice learning environments.
Through this award, the North Carolina Aquarium on Roanoke Island (NCARI) has installed NOAA's Science on a Sphere (SOS) to enhance and expand their existing Storms exhibit. NCARI's location on the Outer Banks makes understanding ocean systems critically important. Installing SOS increases environmental literacy by exposing NCARI's 300,000 annual visitors to NOAA datasets and information. Additionally, through educational programming students, teachers, and visitors obtain current and accurate information to help them make better-informed decisions. Workshops hosted at NCARI have provided valuable professional development opportunities for both informal educators and NOAA staff.
The University of California, Berkeley's Lawrence Hall of Science (LHS), in partnership with the Bishop Museum in Honolulu, HI, propose to develop and evaluate curriculum-based content modules for spherical display systems. These modules will combine successful research-driven curriculum materials with the compelling nature of a spherical display to engage and inform museum visitors in the process of observing and interpreting patterns of global climate data.
The Boonshoft Museum of Discovery/Discovery Zoo in Dayton, OH has developed and implemented a new, permanent exhibition featuring NOAA's Science on a Sphere. The exhibition builds environmental literacy among public visitors, K-12 students, and the myriad of groups that the Museum reaches. A signifi cant portion of the audience is from underrepresented groups. A special display within the exhibition focuses on the Mississippi Watershed and how it is related to the health of the oceans. The exhibition also includes three interactive stations where visitors can engage in hands-on activities related to NOAA datasets.
Dialogue in science communication is a necessity - everybody agrees on it - because science and technology issues are involved in so many aspects of the citizens life, and in so many cases can raise suspects, fears, worries or, on the contrary, expectations and hopes. But who are the possible interlocutors for scientists and policy-makers? Everybody, says Luisa Massarani, beginning with children and teenagers. Also in such controversial and sensitive issues like AIDS or GMO.
In partnership with the University of Pennsylvania's Graduate School of Education, The Franklin Institute Science Museum will develop, test, and pilot an exportable and replicable cyberlearning exhibit using two cutting edge technologies: Augmented Reality (AR) and Virtual Reality (VR). The exhibit's conceptualization is anchored in the learning research vision of the NSF-funded workshop Cyberinfrastructure for Education and Learning for the Future (Computing Research Association, 2005). The incorporation of VR and AR technologies into the Franklin Institute's electricity and Earth science exhibits is an innovation of traditional approaches to hands-on learning and will improve the quality of the learning experience for the primary audience of families with children and elementary school groups. The project has implications for future exhibit development and more broadly, will provide new research on learning on how to incorporate cyberlearning efforts into traditional exhibits. Fifteen participating exhibit developers across the ISE field will assist in the evaluation of the new exhibit; receive training on the design and development of VR and AR exhibits for their institutions; and receive full access to the exhibit's new software for implementation at their informal learning sites. The technology applications will be developed by Carnegie Mellon University's Entertainment Technology Center--leaders in the field in Virtual Reality design and development. Front-end and formative evaluation will be overseen internally by the Franklin Institute. The Institute for Learning Innovation will conduct the summative evaluation. Research will be conducted by the University of Pennsylvania's Graduate School of Education on the effects of AR and VR technologies on exhibit learning.
The Louisiana State Museum and Tulane University/Xavier University Center for Bioenvironmental Research and the University of Rhode Island Graduate School of Oceanography, along with several other research collaborators, designers, evaluators, and the Times-Picayune newspaper are partnering to develop a multi-pronged approach on educating the general public, school children, teachers and public officials on the STEM-related aspects of Hurricane Katrina and its implications for the future of New Orleans and other parts of the country. The major products will be an 8,500 square-foot semi-permanent exhibit, smaller exhibits for Louisiana regional libraries, a comprehensive Web site on hurricanes, a set of studies on informal learning, a case study for public officials about the relevance of science research to policy and planning, teacher workshops, and a workshop for interested exhibit designers from around the country. This project advances the field of informal science education by exploring how museums, universities, and their communities can work together to provide meaningful learning experiences on STEM topics that are critical to solving important community and national issues.
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickJohn MaedaYasmin Kafai
Today we have access to an almost inconceivably vast amount of information, from sources that are increasingly portable, accessible, and interactive. The Internet and the explosion of digital media content have made more information available from more sources to more people than at any other time in human history. This brings an infinite number of opportunities for learning, social connection, and entertainment. But at the same time, the origin of information, its quality, and its veracity are often difficult to assess. This volume addresses the issue of credibility—the objective and
Young people's use of digital media may result in various innovations and unexpected outcomes, from the use of videogame technologies to create films to the effect of home digital media on family life. This volume examines the core issues that arise when digital media use results in unintended learning experiences and unanticipated social encounters. The contributors examine the complex mix of emergent practices and developments online and elsewhere that empower young users to function as drivers of technological change, recognizing that these new technologies are embedded in larger social
It may have been true once that (as the famous cartoon of the 1990s put it) "Nobody knows you're a dog on the Internet," and that (as an MCI commercial of that era declared) on the Internet there is no race, gender, or infirmity, but today, with the development of web cams, digital photography, cell phone cameras, streaming video, and social networking sites, this notion seems quaintly idealistic. This volume takes up issues of race and ethnicity in the new digital media landscape. The contributors address this topic—still difficult to engage honestly, clearly, empathetically, and with