As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Informal STEM educational activities have proliferated widely in the US over the last 20 years. Additional research will further validate the long-term benefits of this mode of learning. Thus, elaborating the multitude of variables in informal learning and how those variables can be used for individual learning is yet to be defined for the circumstances of the learners. Thus, the primary objective of this work is to produce robust and detailed evidence to help shape both practice and policy for informal STEM learning in a broad array of common circumstances such as rural, urban, varying economic situations, and unique characteristics and cultures of citizen groups. Rather than pursuing a universal model of informal learning, the principal investigator will develop a series of comprehensive models that will support learning in informal environments for various demographic groups. The research will undertake a longitudinal mixed-methods approach of Out of School Time/informal STEM experiences over a five-year time span of data collection for youth ages 9-19 in urban, suburban, town, and rural communities. The evidence base will include data on youth experiences of informal STEM, factors that exert an influence on participation in informal STEM, the impact of participation on choices about educational pathways and careers, and preferences for particular types of learning activities. The quantitative data will include youth surveys, program details (e.g. duration of program, length of each program session, youth/facilitator ratio, etc.), and demographics. The qualitative data will include on-site informal interviews with youth and facilitators, and program documentation. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Previous research has identified parental involvement—the ways parents and other caring adults interact with children in and outside of the home, and the kinds of learning materials with which parents surround children—as key to helping children develop knowledge and skills in literacy and math (Bassok, Finch, Lee, Reardon, & Waldfogel, 2016; Burgess, Hecht, & Lonigan, 2002; Niklas, Nguyen, Cloney, Tayler, & Adams, 2016; Sénéchal & LeFevre, 2002; Skwarchuk, Sowinski, & LeFevre, 2014). Parental support may be critical to children’s developing knowledge and understanding in science as well.
DATE:
TEAM MEMBERS:
Megan SilanderTodd GrindalNaomi HupertElisa GarciaKea AndersonPhilip VaheyShelley Pasnik
This project, an NSF INCLUDES Design and Development Launch Pilot, managed by the University of Nevada, Reno, addresses the grand challenge of increasing underrepresentation regionally in the advanced manufacturing sector. Using the state's Learn and Earn Program Advanced Career Pathway (LEAP) as the foundation, science, technology, engineering and mathematics (STEM) activities will support and prepare Hispanic students for the region's workforce in advanced manufacturing which includes partnerships with Truckee Meadows Community College (TMCC), the state's Governor's Office of Economic Development, Charles River Laboratories, Nevada Established Program to Stimulate Competitive Research (Nevada EPSCoR) and the K-12 community.
The expected outcomes from the project will inform the feasibility, expandability and transferability of the LEAP framework in diversifying the state's workforce locally and the STEM workforce nationally. Formative and summative evaluation will be conducted with a well-matched comparison group. Dissemination of project results will be disseminated through the Association for Public Land-Grant Universities (APLU), STEM conferences and scholarly journals.
DATE:
-
TEAM MEMBERS:
David ShintaniJulie EllsworthKarsten HeiseRobert StachlewitzRegina Tempel
resourceprojectProfessional Development, Conferences, and Networks
Project SYSTEMIC (A Systems Thinking Approach to STEM Ecosystem Development in Chicago) will apply systems thinking to a community-level STEM ecosystem development effort in one of Chicago's largest and most distressed neighborhoods. The project aims to broaden participation of African American and low-income Chicago Public School students (preK-12) in STEM learning opportunities. The proposed model of collaborative change for this project builds on the work of two coordinated collective impact initiatives--the Chicago STEM Pathways Cooperative and Austin Coming Together, a network of local organizations committed to improving educational and economic outcomes for the community. A key feature of this project is that it adds innovative, interactive, visual problem structuring and solving strategies to highlight and uncover the systemic interdependencies that contribute to the BP challenge for African American youth. The project will convene a series of workshops to engage community stakeholders in the mapping of the STEM ecosystem. A broad and representative cross-section of community stakeholders will design and develop evidence-based STEM ecosystem organizing and implementation strategies. Key outcomes anticipated from this project are the development of a shared understanding, agenda, activities, and commitment to collectively address the underlying challenges of STEM access and participation for African American youth. The goal of this community-driven project is to develop a viable system model that elevates neighborhood voices, historically excluded from the problem-solving table and decision-making processes, to leverage existing assets, build local capacity, increase messaging and awareness of the value of STEM, identify needed new programs, and develop coordination/resource sharing mechanisms across partners to support implementation. The evaluation of this project will be grounded in systems thinking and culturally-responsive approaches that seek to understand the diverse perspectives of stakeholders while measuring progress toward project goals. Evaluation data will be used to assess the problem structuring process, to evaluate the organizational strategy designed to address the structured problem, and to support adaptive learning among stakeholders.
Aligning for Impact: Computer Science Pathways Across Contexts [CS-PAC] is an NSF INCLUDES Design and Development Launch Pilot. It broadens participation of students who are underrepresented in computer science by using the convening and policy-making power of the Georgia State Department of Education to coalesce school district leaders to implement K-12 computer science education. The project provides a national model for how to work toward systemic change. With the State Department of Education's coordination, several school districts will collaboratively seek improvements in their own student participation rates. The coordination of data reporting and analysis, resources, communications, and policy promote more equitable participation in computer science education. Research emerging from this project informs other states about how to collaboratively shape computer science education policy and policy implementation.
Using a Collective Impact approach to systemic change, the project creates sustainable institutional change at the community, state, and national levels. Qualitative and quantitative data provide descriptions about how to utilize alignment strategies within Collective Impact in three different contexts: rural, suburban, and urban. Outcomes utilize a regression discontinuity analysis to justify successful implementation as well as qualitative analysis of implementation efforts that were deemed most effective by all stakeholders. The project outputs directly affect over 88,000 students across five districts and indirectly affect over 1.7 million in Georgia alone. The culminating project goal is the development of a coherent framework for aligning K-12 computer science education pathways.
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.
This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The subject of physics and all of its sub-disciplines are becoming more prevalent in the public press as the research results appear to be quite interesting and important. While the physics discipline has made a Nation-wide effort to acquaint the public with physics knowledge through informal education learning experiences for years, it has not been as successful as the community desires. Thus, this project is aimed to gather all of the informal and outreach physics education efforts that have been attempted in the hope of finding the best practices for learning physics concepts and practices. A compendium will be published to inform future opportunities on how to educate the public through informal and outreach mechanisms. This project is a collaboration between Michigan State University and the University of Colorado. The physics community has a long history of engaging audiences in informal education activities. Physics institutions that facilitate informal programs include university departments, national laboratories and centers, and professional societies and organizations. There is, however, no systemic understanding of how these programs are facilitated, nor an assessment of the collective impact that these programs have on participants. This project will address numerous research questions in the broad areas of Activity Detail, Structural Aspects, and Assessment. Further, their efforts will determine the "who, what, why, where and how" of informal physics offerings, focusing on their facilitation, impact on participants, and the academic and discipline-specific cultures from which these programs originate. The study has several definite research outcomes that will emerge from this methodology: 1) They will produce a survey of the informal efforts of university physics departments, national physics labs and national physics organizations, 2) They will develop a taxonomy of informal physics programs from which we can characterize the landscape of programs, and 3) by investigating both "successful" as well as "failed" or terminated programs, they will develop an understanding of the culture and resources needed to support outreach from these research findings. In addition, they will produce published works that can be utilized by informal practitioners and administrators in physics to examine current programs and guide the development of new programs. With regards to the research questions and framework, the overarching and driving question for this research project is: "What is the landscape of informal physics learning, specifically, of those programs in the United States facilitated by physicists and physics students at academic institutions, national labs and by national physics organizations?" This study will provide a robust understanding of the state of informal physics programs and outreach by physicists in the United States today. Findings will inform practitioners and administrators as to how best to support and design informal physics programming. The results will also have broad implications for other discipline-specific informal STEM programming. The primary data collection methods will be a nationwide survey and interviews with a large sample of informal practitioners from the physics community. Site visits will be conducted with a subset of these programs in order to observe programs in action and to glean insights from university participants, community partners, public, and K-12 audiences.
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.
Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
By engaging diverse publics in immersive and deliberative learning forums, this three-year project will use NOAA data and expertise to strengthen community resilience and decision-making around a variety of climate and weather-related hazards across the United States. Led by Arizona State University’s Consortium for Science, Policy & Outcomes and the Museum of Science Boston, the project will develop citizen forums hosted by regional science centers to create a new, replicable model for learning and engagement. These forums, to be hosted initially in Boston and Phoenix and then expanded to an additional six sites around the U.S., will facilitate public deliberation on real-world issues of concern to local communities, including rising sea levels, extreme precipitation, heat waves, and drought. The forums will identify and clarify citizen values and perspectives while creating stakeholder networks in support of local resilience measures. The forum materials developed in collaboration with NOAA will foster better understanding of environmental changes and best practices for improving community resiliency, and will create a suite of materials and case studies adaptable for use by science centers, teachers, and students. With regional science centers bringing together the public, scientific experts, and local officials, the project will create resilience-centered partnerships and a framework for learning and engagement that can be replicated nationwide.
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.
The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE:
-
TEAM MEMBERS:
Steven StochajPatricia SullivanLuis Vazquez