Science is a process of inquiry that involves question asking, experimentation, and exploration. However, for youth, it is often presented as settled, a fixed collection of facts, principles, and theories that can seem sterile and unimaginative. This project is designed to combat that idea. This Research in Service to Practice project brings scientists, middle school youth and choreographers together to explore unsettled scientific phenomena from a complex systems perspective using choreography and agent-based modeling (ABM), to engage all participants in cutting edge scientific inquiry. Given the ubiquity of complex systems, being able to adopt a complex systems perspective is critical to understanding the world and our relationship to it. However, research has shown that this can be a challenge, specifically for youth. While most complex systems research has not focused on the role of the body, recent studies have shown the promise and potential of embodiment as its own form of reasoning about complex systems. Thus, this project will create exploratory science spaces foregrounding embodiment in the process of scientific discovery. The program has two phases: (1) a 20-hour training workshop where scientists and choreographers engage in interdisciplinary collaborative design work, and (2) a 60-hour summer program where the researcher-practitioner partnership involving scientists, choreographers and youth engages in agent- based & embodied choreographic scientific modeling. The summer program takes place in community-based centers in Gainesville, FL and Boston, MA broadening perceptions of what science research looks like and can be. Each site will host 20 youth, two local scientists, and a local choreographer. Participants will engage in embodied collaborative inquiry, brainstorming and modeling to create choreographic representations and culminate in a public event for the community. The project aims to understand the experiences of and shifts in youth and scientists as they engage in these activities and to understand how to design such a model for informal learning. The project will also help scientists apply a complex systems lens to their own work and settled perspectives. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
Using a design-based research (DBR) approach, the project will develop and expand embodied and agent-based learning theories, while also piloting, analyzing, and refining collaborative models for science learning in informal spaces. The research questions are: 1. How does engaging in the process of creating embodied and agent-based models of complex systems contribute to new ways of understanding science, de-settle ideas about the process of how science gets “made”, and impact understanding of the role of the body in making science? and 2. How can arrangements of bodies and modeling tools work together to support understanding of complex systems? The research and design are informed by three main theoretical principles: (a) science is “dance of agency”, a process of inquiry that through iterative dialogic interaction with tools, technology, and humans, produces understandings that more and more closely explain natural phenomena; (b) embodied-interactionist theories of learning allow us to understand representational sense-making by looking closely at the processes by which representations are made, not just at representational end- products; and (c) creative embodiment and agent based modeling are valuable tools for sense-making around complex science ideas and emergent phenomena. Two cycles of design, implementation, and analysis across two different informal learning sites will be conducted. Data will be collected at both sites, resulting in four implementation and data collection periods. Each round of implementation will be staggered so that reflections and lessons from an implementation can inform the next design iteration. This project will provide insights on the relationship between choreography and ABM as tools for scientific sense-making and expand ABM to consider the role of movement and bodies more broadly in physical space. It will also contribute to an understanding of how underrepresented youth’s perceptions and conceptions of science can be shaped through embodied science activities, and of the relationships these youth see between their own bodies and identities, science, and the creative arts. Finally, by involving individuals from underrepresented communities as researchers, designers, scientists, evaluators, and advisors, this project expands cross-cultural and training opportunities within the field of education and STEM research.
DATE:
-
TEAM MEMBERS:
Dionne ChampionAditi WaghLauren Vogelstein
Research suggests that when both science, technology, engineering, and mathematics (STEM) education and social-emotional development (SED) are supported in afterschool, summer, and other informal settings, young people can better develop skills for the future such as leadership, decision-making, and relationship-building so they could have successful careers/participation in STEM. However, researchers and practitioners working in the out-of-school time (OST) sector often do so without connections across these fields. The appeal for more integration of STEM and SED in OST program delivery and data collection has remained abstract and aspirational. This Literature Review and Synthesis project is the next step needed to move the OST field toward the intentional, explicit, and evidence-based integration of STEM and SED in research and practice. The project will create shared understanding necessary to improve program content, staff training, and evaluation. This synthesis will support future research on unified STEM+SED that can lead to more effective, equitable, and developmentally appropriate programming. Improved programming will contribute to talent development, address STEM workforce needs, and promote socioeconomic mobility to benefit children, youth, educators, and society. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
This project will systematically examine what domains and skills at the interface of STEM+SED are most researched among K-12 youth in informal STEM learning environments, compared to formal STEM educational environments. The team will further explore how gender, race, and other intersectional forms of equity can be added to the STEM+SED equation. The project team will search and appraise empirical and gray literature (2001-2020) to identify the most commonly researched domains and skills at the interface of STEM+SED in informal environments serving K-12 youth. The review and synthesis process will include four steps: search, appraisal, synthesis, and analysis. The search will begin with STEM+SED skills in four foundational domains (agency, belonging, engagement, and reflection) identified previously with experts from the fields of STEM and SED. The search will include all existing, eligible references from formal K-12 settings to contrast commonly studied domains and skills (e.g., perseverance, self-regulation, teamwork, complex problem-solving, self-awareness) in formal versus informal learning environments. The study approach will then compare these domains and skills by the demographics variables noted above. Following the creation of a strong catalog of evidence, information will be synthesized using three “pillars” for building coherence in STEM+SED integration: phenomenon (the knowing), implementation (the doing) and assessment (the result). These pillars will be used to organize and critically analyze the literature. Building conceptual coherence through a systematic review and synthesis of literature from the fields of STEM and SED will lead to greater understanding of STEM+SED in OST practice, highlight the most important content and skills to learn in informal environments, and identify when and how youth should learn specific content and skills at the interface of STEM+SED. Applying coherence to the integration of STEM+SED ensures that the principles and practices are layered carefully, in ways that avoid superficial checklists or duplication of effort and build meaningfully upon young people’s knowledge and skills. The long-term goal is to broker connections and alignment of STEM+SED across schools and OST programs. Recommendations and a roadmap to guide equitable, effective STEM+SED research, practice, and policy will result from this research.
This Research in Service to Practice project will bring together representatives from six long-standing youth programs, experts in the field of out-of-school-time youth programming, and education researchers to collaboratively explore the long-term (15-25 years) impact of STEM-focused, intensive (100+ hours/year), multi-year programming. The six partnering programs have maintained records with a combined total of over 3000 alums who participated between 1995 and 2005. This four-year research project uses an explanatory, sequential, mixed-method design to carry out four steps: (1) identify and describe the impact on the lives of program alums who are now ages 30 to 45; (2) identify causal pathways from program strategies to long-term outcomes; (3) develop an understanding of these pathways from the perspective of the people who experienced them; and (4) disseminate this knowledge broadly to those associated with STEM-focused programming. Research questions include: How did these programs affect youth's lives as they progressed toward and into adulthood? What program strategies and what participant attributes contributed most to the staying power of these effects? What life events and social structures supported and inhibited participant outcomes? This project describes the effects, identifies the causal pathways, and produces materials that programs can use for both strategic planning and generating support resources. Additionally, this project provides research methodology for organizations that want to conduct their own retrospective research and lays a foundation for a more comprehensive study that includes programs without historical documentation. The project aligns with NSF's Big Idea "NSF INCLUDES: Transforming education and career pathways to help broaden participation in science and engineering" by providing essential information about the long-term effect of interventions on educational and career pathways in STEM.
The project's approach involves three phases: (1) research preparation, (2) causal structural modeling of survey data from approximately 2,000 respondents, and (3) rich qualitative follow-up. Human ecological and self-determination theories inform data collection and analyses at every project phase. In the preparation phase, program staff complete program profiles from an historic perspective by identifying program strategies that may have included, for example, scientific research, robotics development, teaching science in informal settings, and working in scientific research labs. In the quantitative phase, the project will recruit alums who attended one of the 6 youth programs between 1995 and 2005 to submit a current resume and complete an online questionnaire, based on the following scaled variables: retrospective recall of basic psychological need satisfaction and frustration in relation to perceived program strategies; STEM identity (at three time periods: pre-program; post-program; and current); current well-being; career influences; and career barriers. The questionnaire also includes open-ended questions about life events related to the following categories: family and friends, school and work, and living conditions. Analysis of the questionnaire will lead to development of a causal structural model. In the qualitative phase, data will be collected from a purposefully selected sample of 30 alums based on findings from the quantitative phase. Methods include interviews, photo journals, and STEM pathways maps. Analysis of interviews, resumes, and photo journals take place within the structure of basic psychological need satisfaction and motivational quality across ecological systems over time. Qualitative analysis uses the constant comparative method, and findings are used to update and refine the final causal structural model and inform overall findings, conclusions, and recommendations of the project.
Since the 1990s, out-of-school time programs have engaged youth from underserved communities in STEM learning and in building interest in STEM careers, yet these programs often based on untested assumptions that participation has lasting effects on education, career, and life choices related to STEM. This Research in Service to Practice project has the potential to 1) guide practitioners in program improvement and improved program outcomes; 2) provide insight into achieving program goals, such as equity, increased well-being of participants, an informed citizenry, and a diversified STEM workforce; and 3) inform multi-stakeholder decision-making with respect to this type of programming. This research also builds a foundation of research data collection and analysis methods to guide and support future research on long term-impacts and youth STEM programming. Dissemination strategies include a website, webinars, video, infographics, conference presentations, and written reports to reach stakeholders including practitioners, researchers, administrators, and funders.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.