The Hands On Children's Museum will build on two of its most distinctive features-an Outdoor Discovery Center and a Young Makers program-to create a Nature Makers program. The interdisciplinary project will link nature-based learning with maker activities that use natural materials. Partnerships with Native American tribes, scientists, maker groups, and others will enrich the staff-led offerings. Nature Makers addresses two of the most significant needs in early learning-inspiring early STEM education and connecting children with the outdoors. Nature Makers will increase children's exposure to outdoor tinkering to build the foundation for STEM success in school; educate parents, caregivers, and teachers about the important role outdoor exploration plays in STEM achievement; and stimulate children's curiosity about the natural world and increase the time they spend outside. Evaluation findings will be shared internally to inform continuous improvement of program offerings, and externally to serve as a model for outdoor making activities.
The Children's Museum at La Habra's Lil' Innovators Early Childhood STEM project will increase STEM skill and engagement among early childhood preschool teachers, disadvantaged preschoolers, and their parents. Delivered in partnership with three of La Habra's Head Start and California State Preschool program schools, the project will provide 224 preschoolers and 20 teachers with a year-long program offering increased developmental skills in STEM for underserved, low-income Hispanic students who are primarily English Language Learners. Teacher outcomes will include improved strategies for teaching STEM and increased teaching quality of STEM subjects. Parent outcomes include increased belief in the importance of STEM and increased ability to support their child's STEM learning. The standards-based education project will improve the museum's ability to serve its public by creating a community of practice consisting of a network of administrators, educators, and evaluators who will work together to improve the quality of STEM education for the youngest learners in this academically-challenged community.
The aim of this review of the literature is to identify what we already know about the engagement of children aged under eight in makerspaces. Given the limited literature in the area, the review takes a broader look at makerspaces for older children where relevant. This is not a systematic review; its aim is not to offer an exhaustive account of all of the research conducted in the area. Rather, this narrative review provides an introduction to key aspects of research on makerspaces and enables the identification of themes dominant in the field, and those areas where more research is needed
DATE:
TEAM MEMBERS:
Jackie MarshKristiina KumpulainenBobby NishaAnca VelicuAlicia Blum-RossDavid HyattSvanborg JónsdóttirRachael LevySabine LittleGeorge MarusteruMargrét Elísabet ÓlafsdóttirKjetil SandvikFiona ScottKlaus ThestrupHans Christian ArnsethKristín DýrfjörðAlfredo JornetSkúlína Hlíf KjartansdóttirKate PahlSvava PétursdóttirGísli ThorsteinssonUniversity of Sheffield
The independent evaluators at Knight Williams Inc. developed a front-end survey to gather background and baseline information about the 16 partner organizations selected to conduct outreach programs as part of SciGirls CONNECT2. The goal was for two people from each partner organization to complete the online survey about their background and prior use of the SciGirls Seven and related strategies. A total of 30 partner representatives completed the survey by the requested deadline, resulting in a response rate of 94%. The majority identified as program leaders, with smaller groups saying they
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its afterschool program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering afterschool programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015.
Education Development Center is conducting the formative and summative evaluation of the project. To assess the implementation
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its afterschool program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering afterschool programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015.
Education Development Center is conducting the formative and summative evaluation of the project. To assess the implementation
Community collaboration and empowerment was identified by the GENIAL organizers as an important theme to include in the Summit. Informal STEM learning (ISL) organizations strive to engage Latino audiences in their science, technology, engineering, and math (STEM) programming on a long-term basis and recognize the importance of understanding the needs, motivations, interests, and challenges of the diverse Latino community in the context of STEM participation. An effective way to collaborate with a community is to involve them as equal partners in the co-development of ISL experiences. A key
DATE:
TEAM MEMBERS:
Salvador AcevedoPaul DusenberyExploratorium
This study explored the effect of depth of learning (as measured in hours) on creativity, curiosity, persistence and self-efficacy. We engaged ~900 parents and 900 students across 21 sites in Washington, Chicago, Los Angeles, New York, Alabama, Virginia and the United Arab Emirates, in 5-week (10-hr) Curiosity Machine programs. Iridescent trained partners to implement the programs. Thus, this analysis was also trying to establish a baseline to measure any loss in impact from scaling our programs and moving to a “train-the-trainer” model. We analyzed 769 surveys out of which 126 were paired. On
Designing Our World (DOW) was a four-year NSF-funded initiative in which the Oregon Museum of Science and Industry (OMSI) sought to promote girls’ pursuit of engineering careers through community-based programming, exhibition development, and identity research. The overarching aim of DOW was to engage girls ages 9–14 with experiences that illuminate the social, personally relevant, and altruistic nature of engineering. In addition to programming for girls, the project also included workshops for parents/caregivers, professional development for staff from community partners; and an exhibition
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will develop and test intergenerational science media resources for parents that are participating in adult education programs and their young children. The materials will build on the research-based and successful children's television program, Fetch with Ruff Ruffman. The target audience includes parents enrolled in adult education programs who lack a high school diploma or are in English as a Second Language classes. These resources will support parents' engagement in science activities with their children both in the adult education settings as well as at home. Adult and family educators will receive professional development resources and training to support their integration of the parent/child activities. Project partners include the National Center for Families Learning, Kentucky Educational Television, and Alabama Public Television,
The goals of the Ruff Family Science project are to: (1) investigate adult education settings that feature an intergenerational learning model, in order to learn about the unique characteristics of adults and families who are enrolled in these programs; (2) examine the institutional circumstances and educator practices that support joint parent/child engagement in science; (3) iteratively develop new prototype resources meet the priorities and needs of families and educators involved in intergenerational education settings; and (4) develop the knowledge needed to create a fuller set of materials in the future that will motivate and support diverse, low-income parents to investigate science with their children. The research strategy is comprised of three main components: Phase 1: Needs Assessment: Determine key motivations and behaviors common to adult education students who are also parents; surface obstacles and assets inherent in these parents' current practices; and examine the needs and available resources for supplementing parents' current engagement in family science learning. Phase 2: Prototype Development: Iteratively develop two prototype Activity Sets, along with related educator supports and training materials, designed to promote joint parent-child engagement with English and Spanish-speaking families around physical science concepts. Phase 3: Prototype Field Test: Test how the two refined prototype Activity Sets work in different educational settings (adult education, parent education, and parent and child together time). Explore factors that support or impede effective implementation. Sources of data for the study include observations of adult and parent education classes using an expert interview protocol, focus groups, adult and family educator interviews, and parent surveys.
WNET, working with Education Development Center, will lead a small scale Innovations in Development effort to develop, research, and evaluate a new model to engage underserved families in STEM learning. The new endeavor, Cyberchase: Mobile Adventures in STEM, will build on the proven impact of the public media mathematics series Cyberchase and the growing potential of mobile technology and texting to reach underserved parents. WNET will produce two new Cyberchase episodes for 6-9 year olds, focused on using math to learn about the environment. Drawing on these videos and an existing Cyberchase game, the team will produce a bilingual family engagement campaign that will combine an in-person workshop followed by a 6-8 week "text to parent" campaign, in which parents receive weekly text messages suggesting family STEM activities related to the media content. The engagement model will be piloted in three cities with large low-income/Latino populations, along with one texting campaign offered without the workshop. This project will build knowledge about how to deploy well-designed public media assets and text messaging to promote fun, effective STEM learning interactions in low-income families. While past research on educational STEM media has tended to focus on children, especially preschool age, this project will focus primarily on text messaging for parents, and on learners age 6-9, and the wider scope of parent/child STEM interactions possible at that age.
The primary goal of the project will be to develop, test and refine a family engagement model that includes a face-to-face workshop, rich narrative Cyberchase content, and text-message prompts for parents to engage in short, playful STEM activities with children. The project team will explore which features of the mobile text-and-media program have most value for low-income and Latino families and prompt STEM learning interactions, including a comparison of workshop-based and text-only variants. The project will have three phases: needs assessment and preliminary design; an early-stage test in New York and development and testing of media; and three late-stage tests in contrasting locations, two including workshops and one "text-only," and analysis of findings. Ultimately, the project will share knowledge with the field about the opportunities and challenges of using mobile texting and public media to reach underserved families effectively. This knowledge will also inform a future proposal for production and outcomes research, which, based on the study results, may include a scaled-up version in ten locations and a ten-city Randomized Control Test. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The Maker movement has grown considerably over the past decade, both in the USA and internationally. Several varieties of "making" have been developed, but there are still many important questions to ask and research to conduct about how different programmatic structures may relate to the potential impact Maker programs can have on individuals and communities. As part of a larger, long-range initiative in their local community, the New York Hall of Science proposes to leverage the philosophy and activities of the Maker movement to take important first steps toward realizing their eventual goal of developing family and community-wide commitment to and improvement of STEM education. The project would build both foundational and practical knowledge about how parents with little or no prior knowledge of or experience with Making choose to engage with, contribute to, and learn from Maker programming designed for families with children from low-income households and backgrounds that are under-represented in the STEM professions. The intent is to build their understanding of the value of Making as a pathway toward deeper STEM learning. The project is characterized as "high-risk with potentially high-payoff." It applies a community psychology approach (rather than individual psychology) to the study of Making, and it focuses on parents as potential learners and leaders. While some work has been done in the field with respect to the role of parents in Maker environments, this is a new approach to the study of Making and its potential influence on the broader culture of STEM learning in a community. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
Two informal learning environments will be developed and studied at the New York Hall of Science: Learning Together, a table-top, minimally staff-facilitated setting in the Hall's science library, and Family Making, a high-tech and staff-facilitated experience in the Hall's maker facility. The study poses two research questions: (1) How, and to what extent, do the Learning Together and Family Making programs attract and sustain parental engagement, parental facilitation of children's activity, and parents' own explorations of Making? (2) From a community psychology perspective, what social structures, resources, social processes, and surrounding institutional conditions support or impede these parental pathways into exploring and understanding Making as a pathway toward STEM learning? The study will involve sustained collaborations between the Hall's Maker Space staff and research team, and will seek to generate guidance about how to design Maker programming that attracts and retains low-income, under-served family groups and new knowledge about how external structures and practices shape this audiences' perceptions of and interest in Making as a mode of STEM learning.