Space Science Institute (SSI) is conducting an International Polar Year project in partnership with the Marine Advanced Technology Center (NSF-funded MATE, Monterey, CA) and the Challenger Learning Center of Colorado (CLCC) to produce and disseminate an online simulation of scientific explorations by the latest generation of Antarctic underwater remotely operated vehicles (ROV). The explorations are based on the ROV work of Dr. Stacey Kim of the Moss Landing Marine Laboratories and of Dr. Robert Pappalardo and Dr. Arthur Lane at the Jet Propulsion Lab. Products include the simulation, supporting materials and guides, a web site, and a CD Master. Targeted audiences include: (a) middle-school to college-aged students who participate in national annual underwater ROV competitions, (b) Challenger Learning Centers in Colorado and around the country, and (c) the "science attentive" public who will access the simulation via links to SSI and other web sites. Simulations will follow a game structure and feature Antarctic polar science. Estimated annual usage levels are: for MATE, 2000; for Challenger Centers, 300,000; for the general public, 100,000. The project is positioned to continue well beyond the official end of the International Polar Year
The present paper describes the design of teaching materials that are used as learning tools in school visits to a science museum. An exhibition on ‘A century of the Special Theory of Relativity’, in the Kutxaespacio Science Museum, in San Sebastian, Spain, was used to design a visit for first‐year engineering students at the university and assess the learning that was achieved. The first part of the paper presents the teaching sequence that was designed to build a bridge between formal teaching and the exhibition visit. The second part analyses the potential of the exhibition and the
DATE:
TEAM MEMBERS:
Jenaro GuisasolaJordi SolbesJose-Ignacio BarraguesMaite MorentinAntonio Moreno
Science Club is an after school program created in partnership between Northwestern University and the Boys & Girls Clubs of Chicago. Every week throughout the academic year, middle school youth (grades 5-8) work in small groups with their graduate student mentors on challenging, hands-on experiments. The six Science Club curricular modules cover topics ranging from biomedical engineering to food science, all with the goals of helping youth to 1) improve their understanding of the scientific method, 2) develop scientific habits of mind, and 3) increase their interest in STEM fields, particularly health-related careers. Science Club serves 60 youth every quarter with the help of 30 trained scientist mentors. Science Club meets three days a week at the Pedersen-McCormick Boys & Girls Club in Chicago, IL.
Making assumptions is an important step in solving many real-world problems. This study investigated whether participants who could solve well-defined physics problems could also solve a real-world physics problem that involved the need to make assumptions. The participants, who all had at least a BA in physics, were videotaped “thinking aloud” while solving three well-defined and one real-world problem and then interviewed about the problem-solving process. All the problems dealt with the same scientific content. The recordings were analyzed to identify similarities and differences in the
This paper discusses conceptions of identity in relation to science education and presents material from a series of interviews and focus groups with graduate students in science and technology. Given difficulties in retention and levels of significant participation by minority students indicated by aggregate data, the issue of race, as it informs critical interactions at a majority research university, is explored in terms of its effects on identity formation. It is argued that we need to look at “real-time” science to see how subtle interactions affect minority graduate students. These
The article discusses how undergraduate science students became docents for "The Genomic Revolution" exhibit at the Fernbank Museum of Natural History in Atlanta, Georgia. According to the article, a docent is one who serves as a connection between the museum and the attendees and acts as an interpreter of the collection for the visitors. Undergraduate students were recruited from schools in the Atlanta, Georgia area including the Georgia Institute of Technology, Emory University, and Spellman College. The docent training program that would cover the genetic principles of the exhibit, the Peer
DATE:
TEAM MEMBERS:
Robert PyattTracie RosserKelly Powell
This paper examines the experiences reported by scientists and graduate students regarding the experiences that first engaged them in science. The interviews analyzed for this paper come from Project Crossover, a mixed‐methods study of the transition from graduate student to PhD scientist in the fields of chemistry and physics. This analysis involved review of 116 interviews collected from graduate students and scientists and focused on the timing, source, and nature of their earliest interest in science. The majority (65%) of participants reported that their interest in science began before
This award is for a Science and Technology Center devoted to the emerging area of nanobiotechnology that involves a close synthesis of nano-microfabrication and biological systems. The Nanobiotechnology Center (NBTC) features a highly interdisciplinary, close collaboration between life scientists, physical scientists, and engineers from Cornell University, Princeton University, Oregon Health Sciences University, and Wadsworth Center of the New York State Health Department. The integrating vision of the NBTC is that nanobiotechnology will be the genesis of new insights into the function of biological systems, and lead to the design of new classes of nano- and microfabricated devices and systems. Biological systems present a particular challenge in that the diversity of materials and chemical systems for biological applications far exceeds those for silicon-based technology in the integrated-circuit industry. New fabrication processes appropriate for biological materials will require a substantial expansion in knowledge about the interface between organic and inorganic systems. The ability to structure materials and pattern surface chemistry at small dimensions ranging from the molecular to cellular scale are the fundamental technologies on which the research of the NBTC is based. Nanofabrication can also be used to form new analytical probes for interrogating biological systems with unprecedented spatial resolution and sensitivity. Three unifying technology platforms that foster advances in materials, processes, and tools underlie and support the research programs of the NBTC: Molecules of nanobiotechnology; Novel methods of patterning surfaces for attachment of molecules and cells to substrates; and Sensors and devices for nanobiotechnology. Newly developed fabrication capabilities will also be available through the extensive resources of the Cornell Nanofabrication Facility, a site of the NSF National Nanofabrication Users Network. The NBTC will be an integrated part of the educational missions of the participating institutions. NBTC faculty will develop a new cornerstone graduate course in nanobiotechnology featuring nanofabrication with an emphasis on biological applications. Graduate students who enter the NBTC from a background in engineering or biology will cross-train in the other field by engaging in a significant level of complementary course work. Participation in the NBTC will prepare them with the disciplinary depth and cross-disciplinary understanding to become next generation leaders in this emerging field. An undergraduate research experience program with a strong mentoring structure will be established, with emphasis on recruiting women and underrepresented minorities into the program. Educational outreach activities are planned to stimulate the interest of students of all ages. One such activity partnered with the Science center in Ithaca is a traveling exhibition for museum showings on the subject of nano scale size. National and federal laboratories and industrial and other partners will participate in various aspects of the NBTC such as by hosting interns, attendance at symposia and scientist exchanges. Partnering with the industrial affiliates will be emphasized to enhance knowledge transfer and student and postdoctoral training. This specific STC award is managed by the Directorate for Engineering in coordination with the Directorates for Biological Sciences, Mathematical and Physical Sciences, and Education and Human Resources.
DATE:
-
TEAM MEMBERS:
Harold CraigheadBarbara Baird
resourceprojectProfessional Development, Conferences, and Networks
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE:
-
TEAM MEMBERS:
Stephen MadigoskyWilliam KeilbaughVictor DonnayBruce GrantThomas Schrand
The University of Washington’s Museology Program, in partnership with the Woodland Park Zoo and the Learning in Informal and Formal Environments Research Center is developing a model of university-community collaboration where students work with client museums, zoos and aquaria to evaluate exhibits and programs under the guidance of a research mentor. Students will gain experience in audience research and evaluation, as well as in project management, collaboration, and leadership. Staff at participating museums will advance their personal knowledge about visitors and the field of museum evaluation. The project will prepare a new generation of evaluators and museum practitioners through an innovative apprentice-styled laboratory that integrates the strengths of mentoring, fieldwork, academics, and client-centered experiences. Project Advisors include John Falk, Julie Johnson, Randi Korn, Marjorie Schwarzer, and Patterson Williams. Project started January, 2009 with 24 graduate students in the first cadre.
This research study involves collaboration between researchers at the University of Maryland, College Park and Bowie State University, an HBCU, to examine a multi-component pre-service model for preparing minority students to teach upper elementary and middle level science. The treatment consists of (1) focused recruitment efforts by the collaborating universities; (2) a pre-service science content course emphasizing inquiry and the mathematics of data management; (3) an internship in an after school program serving minority students; (4) field placements in Prince Georges County minority-serving professional development schools; and (5) mentoring support during the induction year. The research agenda will examine each aspect of the intervention using quantitative and qualitative methods and a small number of case studies.
DATE:
-
TEAM MEMBERS:
James McginnisSpencer BensonScott Dantley
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE:
-
TEAM MEMBERS:
Ahmed BusnainaNicol McGruerGlen MillerCarol BarryJoey Mead