Skip to main content

Community Repository Search Results

resource project Media and Technology
Space Science Institute (SSI) is conducting an International Polar Year project in partnership with the Marine Advanced Technology Center (NSF-funded MATE, Monterey, CA) and the Challenger Learning Center of Colorado (CLCC) to produce and disseminate an online simulation of scientific explorations by the latest generation of Antarctic underwater remotely operated vehicles (ROV). The explorations are based on the ROV work of Dr. Stacey Kim of the Moss Landing Marine Laboratories and of Dr. Robert Pappalardo and Dr. Arthur Lane at the Jet Propulsion Lab. Products include the simulation, supporting materials and guides, a web site, and a CD Master. Targeted audiences include: (a) middle-school to college-aged students who participate in national annual underwater ROV competitions, (b) Challenger Learning Centers in Colorado and around the country, and (c) the "science attentive" public who will access the simulation via links to SSI and other web sites. Simulations will follow a game structure and feature Antarctic polar science. Estimated annual usage levels are: for MATE, 2000; for Challenger Centers, 300,000; for the general public, 100,000. The project is positioned to continue well beyond the official end of the International Polar Year
DATE: -
TEAM MEMBERS: Brad McLain James Harold
resource research Media and Technology
The Universidad Nacional Autónoma de México (UNAM), as an active cultural promoter, implemented a virtual museum system in order to help and develop expression related to art, science and humanities. The UNAM's cultural heritage is, as in many other universities, a vast number of different kinds of objects, ranging from painting and sculpture to numismatics and architecture, from traditional art to modern multimedia-based exhibits to Scientific Collections. It is impossible to exhibit it all in a single place in an orderly fashion. The Virtual Museum of the University's Cultural Heritage
DATE:
TEAM MEMBERS: Francisco Caviedes Esther de la Herran Andrea Vitela A. Libia Cervantes Jose Mondragon Alma Rangel Jose Silva Ildiko Pelczer Francisco Salgado Adidier Perez-Gomez Carolina Flores-Illescas Jose Casillas Graciela de la Torre Jorge Reynoso Rafael Samano Julia Molinar Jose Manuel Magana Alejandrina Escudero Ariadna Patino
resource research Media and Technology
While we should celebrate our success at evolving many vital aspects of the human-technology interactive experience, we question the scope of this progress. Step back with us for a moment. What really matters? Everyday life spans a wide range of emotions and experiences -- from improving productivity and efficiency to promoting wonderment and daydreaming. But our research and designs do not reflect this important life balance. The research we undertake and the applications we build employ technology primarily for improving tasks and solving problems. Our claim is that our successful future
DATE:
TEAM MEMBERS: Eric Paulos Tom Jenkins August Joki Parul Vora
resource project Media and Technology
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE: -
TEAM MEMBERS: Katherine Perkins Michael Dubson Noah Finkelstein Robert Parson Carl Weiman