Space Science Institute (SSI) is conducting an International Polar Year project in partnership with the Marine Advanced Technology Center (NSF-funded MATE, Monterey, CA) and the Challenger Learning Center of Colorado (CLCC) to produce and disseminate an online simulation of scientific explorations by the latest generation of Antarctic underwater remotely operated vehicles (ROV). The explorations are based on the ROV work of Dr. Stacey Kim of the Moss Landing Marine Laboratories and of Dr. Robert Pappalardo and Dr. Arthur Lane at the Jet Propulsion Lab. Products include the simulation, supporting materials and guides, a web site, and a CD Master. Targeted audiences include: (a) middle-school to college-aged students who participate in national annual underwater ROV competitions, (b) Challenger Learning Centers in Colorado and around the country, and (c) the "science attentive" public who will access the simulation via links to SSI and other web sites. Simulations will follow a game structure and feature Antarctic polar science. Estimated annual usage levels are: for MATE, 2000; for Challenger Centers, 300,000; for the general public, 100,000. The project is positioned to continue well beyond the official end of the International Polar Year
Safe Techniques Advance Research – Laboratory Interactive Training Environment (STAR-LITE) is an innovative laboratory safety training created by the National Institutes of Health, Office of Research Services, Division of Occupational Health and Safety, for high school and undergraduate students. The training was designed to incorporate laboratory safety and risk assessment with the architecture of game-based learning. In this respect, STAR-LITE provides student users with a salient educational experience that uses visual and audio clues, strategic thinking, and physical action to enhance the learning experience. The goal of STAR-LITE is to expand the student’s knowledge base with an introduction to safe laboratory and common risk assessment techniques. STAR-LITE comprises a series of pursuit or Quest-based activities that occur in a virtual laboratory environment. Users direct individualized characters, or avatars, to interact and engage with the features in the virtual laboratory to progress through continuous challenges. STAR-LITE provides users with a significant, repeatable educational experience using visual and audio clues, strategic thinking, and physical action to enhance the learning process. This training offers a unique method of instruction by integrating development of critical thinking proficiencies and application of problem solving skills with visualization of consequences, which result from unsafe behaviors. STAR-LITE’s educational content is presented in a virtual laboratory environment in which virtual characters experience exposures to hazardous biological, chemical, and physical hazards with real-life consequences. Student users participate in a series of Quests that require interaction with characters and laboratory equipment. Basic laboratory safety skills and techniques are presented in the training. These skills and techniques include an introduction to potential biological, chemical, and physical hazards that may be present in multi-discipline laboratories; methods to prevent injuries in the laboratory; methods to protect students, colleagues, and the environment from potential hazards in the laboratory; and emergency preparedness and response basics. STAR-LITE was designed to ensure student users walk through a risk assessment process during each Quest. Because STAR-LITE is a digital game-based learning experience, users can repeat the training as many times as they like. The repeatability of this training enhances the student’s learning experience and allows them to pursue different risk assessment decision paths as they progress through the Quest.
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE:
-
TEAM MEMBERS:
Katherine PerkinsMichael DubsonNoah FinkelsteinRobert ParsonCarl Weiman