This poster was presented at the 2010 Association of Science-Technology Centers Annual Conference. The Saint Louis Science Center is a partner in Washington University's Cognitive, Computational, and Systems Neuroscience interdisciplinary graduate program funded by the NSF-IGERT (Integrative Graduate Education and Research Traineeship) flagship training program for PhD scientists and engineers.
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE:
-
TEAM MEMBERS:
Kurt ThoroughmanGregory DeAngelisRandy BucknerSteven PetersenDora Angelaki
To address the challenges of recruiting, training, impacting, and retaining scientists in informal outreach and to capitalize on access to the public through a local science center, Washington University and the St. Louis Science Center (SLSC; http://www.slsc.org) collaborated to create a program that combines informal science communication and the professional development of graduate students. The program sought to produce scientists who were trained to be effective informal educators. Workshops developed and led by SLSC staff, followed by personalized coaching, covered essential science
The CADRE Early Career Guide offers advice from experienced DR K-12 awardees on becoming a successful researcher in the field of STEM education. The guide also profiles a support program, the CADRE Fellows, for doctoral students in STEM education research.
DATE:
TEAM MEMBERS:
Jennifer StilesCatherine McCullochCommunity for Advancing Discovery Research in Education (CADRE)
This project will develop standardized, exportable and comparable assessment instruments and models for Women In Engineering (WIE) programs nationwide, thus allowing them to assess their program's activities and ultimately provide data for making well-informed evaluations.
To accomplish this goal, the principal investigators at the University of Missouri and Penn State University will work over a three-year period with their institutions' WIE programs and three cooperating programs at Rensselaer Polytechnic Institute, Georgia Tech, and University of Texas at Austin. With these five programs that collectively represent a variety of private and public, years of experience for WIE directors and student body characteristics, the investigators will pilot, revise, implement, conduct preliminary data analysis and disseminate easy-to-access, reliable and valid assessment instruments. The principles of formative evaluation will be applied to all instruments and products. All institutions will use the same set of instruments, thus allowing them to have access to powerful benchmarking data in addition to the data from each of their respective institutions.
A prior project, the Women's Experience in College Engineering Project (WECE) sought to characterize the factors that influence women students' experiences and decisions by studying college environments, events and support programs that affect women's satisfaction with their engineering major, and their decisions to persist or leave these majors. In contrast to WECE's macro-level and student focus, this proposal's target audience is WIE directors, with a focus on WIE programs, not students.
Women in Engineering programs around the United States are a crucial part of our country's response to the need for more women in engineering professions. There are about 50 WIE programs nationwide. Half have expressed interest in this effort. WIE directors will benefit by having ready-made assessment tools that will allow them to collect data on programs, evaluate these programs, and make decisions on how to revise programs and / or redistribute limited resources to maximize overall program effectiveness. Data from these instruments will also provide substantiated evidence for administrators, advisory boards and potential funding agencies. Finally, because these instruments will be available nationwide, programs will have the opportunity to take advantage of powerful benchmarking data for their decision-making processes.
This project provides the next logical step in the national movement to recruit and retain women in engineering.
On the first day of the Science and Society course at the Cooperstown Graduate Program in Cooperstown, New York, I present the students with an incandescent lightbulb, with clear glass so one can easily see the filament inside. I ask the students how it works and they are able to tell me that the electricity comes in there, runs through the filament here, heats up, and produces light. Then I take out my iPhone and slide it across the table and ask, “How does this work?” Blank stares abound.
Subsistence peoples with distinct cultures confronting challenges that threaten their future. Both are politically marginalized indigenous peoples within the dominant governments of their territories. Both find it difficult to control wildlife within their territories, and when they migrate across geographic borders into other jurisdictions. The need to regulate wildlife must be balanced with traditional cultural values and practical realities.
As a result of colonization and loss of culture in indigenous tribes across the world, there is a dire need to document and share the Traditional Ecological Knowledge that Native tribes have practiced for thousands of years. The philosophy and principals that make up the majority of Indigenous spirituality is an interconnectedness with the land, plants and animals (Barnhart 2005). This deep understanding of relationship and reciprocity can teach all of us a lesson about living with the natural world. Using Native Science and Traditional Ecological Knowledge to document traditional medicinal
Language and culture loss is a growing problem among native tribes in the United States, largely due to globalization and western ideals. Culture loss ensures the loss of connection to the land. Documenting cultural practices that involve components of and relationship to the land, such as water, makes the importance of the relationship between the people and land more apparent. Mongolia and regions of Montana share many similarities, environmentally and with indigenous people’s practices. Therefore, Indigenous Research Methodologies and Indigenous sciences were utilized. This research works
Mongolia’s Darhad Valley and regions of Montana can be considered bioregions. A bioregion “encompasses landscapes, natural processes and human elements as equal parts of a whole” (BioRegions.org). Indigenous people live within both regions, and they respectively consider holistic interactions between landscapes, natural processes and humans. Both are faced with change related to developmental pursuits and globalism. Understanding and documenting language and mode of expression is an important way for community members to recognize the value of place and tradition, and how these things are
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous researchers and communities in domestic and international settings. 4 MSU and 2 tribal college student participants engaged research projects with their home communities in the western U.S.—Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, Fort Berthold Mandan/Hidatsa/Arikara—and with Indigenous communities in Mongolia Research was initiated with home communities in spring 2016, and with Indigenous researchers and herder (seminomadic) communities in the Darhad Valley of
DATE:
TEAM MEMBERS:
Kristin RuppelCliff MontagneLisa Lone FightBadamgarav DovchinTaylor ElderCamaleigh Old CoyoteJoaquin Small-RodriguezEsther HallTillie StewartKendra Teague
resourceprojectProfessional Development, Conferences, and Networks
The University of Wisconsin-Madison, Iowa State University, University of Pittsburgh, University of Texas at El Paso, Michigan State University, University of Georgia and University of California, Los Angeles will lead this Design and Development Launch Pilot to build the foundation for a national alliance that will prepare a new national STEM faculty, spanning all of post-secondary education, able to use evidence-based teaching, mentoring and advising practices that yield greater learning, persistence and completion of women and historically underrepresented minorities (URM) undergraduates in STEM. This project was created by this group of institutions, who are members of the Center for the Integration of Research, Teaching and Learning (CIRTL), in response to the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.
The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address a STEM achievement and the graduation gap between undergraduate STEM students who are women and men, and between those who are URMs and non-URMs. At the same time U.S. universities and colleges struggle to recruit, retain and promote a diverse STEM graduate student body, and a diverse STEM faculty, who serve as role models and academic leaders for URM and female students to learn from, to work with and to emulate. This project, the CIRTL INCLUDES - Toward an Alliance to Prepare a National Faculty for Broadening Success of Underrepresented 2-Year and 4-Year STEM Students, has the potential to advance a national network of organizations to improve the success of future STEM faculty who will educate a diverse undergraduate body and contribute to the learning, retention and graduation of women and URMs in STEM fields.
The collaborating CIRTL universities will work closely with multiple organizations to address key goals, including Achieving the Dream, Advanced Technological Education Central, the American Association for the Advancement of Science, the American Mathematical Society of Two-Year Colleges, the American Physical Society, the American Society for Engineering Education, the Association of American Universities, the Association of Public and Land-Grant Universities, the Council of Graduate Schools, the Council for the Study of Community Colleges, Excelencia in Education, the Infrastructure for Broadening Participation in STEM, the Louis Stokes Midwest Center for Excellence, the Math Alliance, the National Institute for Staff and Organizational Development, the National Research Mentoring Network, the Partnership for Undergraduate Life Science Education, the Southern Regional Education Board, the Summer Institutes on Scientific Teaching, and the Women in Engineering Programs and Advocates Network. Together, this extensive collaborative network will three goals: (1) To deepen the preparation of future STEM faculty in teaching, mentoring and advising practices that promote the success of undergraduates who are women and URMs; (2) To expand and strengthen faculty preparation specifically for 2-year colleges; and (3) To target the preparation of future STEM faculty who are members of underrepresented groups for effective teaching and mentoring, contributing to their early-career success. The seven universities who are partnering to lead this project will work to: (1) Form active partnerships and national coalitions for each of the three goals; (2) Employ a collective impact framework for each goal team and the entire alliance, ensuring common agendas, shared metrics, mutually reinforcing activities and an integrated process using data improvement cycles; and (3) Achieve pilot outcomes that position the alliance for future work.
DATE:
-
TEAM MEMBERS:
Robert MathieuRenetta TullKatherine BarnicleCraig OgilvieLeslie GonzalesErin SandersJudy MiltonMary Besterfield-SacreBenjamin FloresOcegueda Isela