Skip to main content

Community Repository Search Results

resource project Summer and Extended Camps
The University of Texas at Austin's Texas Advanced Computing Center, Chaminade University of Honolulu (CUH), and the Georgia Institute of Technology will lead this NSF INCLUDES Design and Development Launch Pilot (DDLP) to establish a model for data science preparation of Native Hawaiian and Pacific Islander (NHPI) students at the high school and undergraduate levels. The project is premised on the promise of NHPI communities gaining access to, and the ability to work with, large data sets to tackle emerging problems in the Pacific. Such agency over "big data" sets that are relevant to Pacific issues, and contemporary skills in data science, analytics and visualization have the potential to be transformative for community improvement efforts. The effort has the potential to advance knowledge, instructional pedagogy and practices to improve NHPI high school and undergraduate students performance in and attraction to STEM education and careers.

The project team will work to: 1) Increase interest and proficiency in data science and visualization among NHPI high school and undergraduate students through a summer immersion experience that bridges computation and culture; 2) Build data science capacity at an NHPI serving undergraduate institution (CUH) through creation of a certificate program; and 3) Develop and expand partnerships with other organizations with related goals working with NHPI populations. The month-long summer training for 20 NHPI college students, and five NHPI high school students, takes place at CUH and focuses on data science, visualization, and virtual reality, including working on problem sets that require data science approaches and incorporate geographically, socially- and culturally-relevant research themes.
DATE: -
TEAM MEMBERS: Kelly Gaither Rosalia Gomez
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Higher Education Programs
The University of New Hampshire (UNH) NSF INCLUDES Design and Development Launch Pilot project is a collaborative effort with the Community College System of New Hampshire, Advanced Manufacturing (AM) businesses, NH Economic Development, and the University of New Hampshire to address workforce development in the Advanced Manufacturing sector in the state. The Advanced Manufacturing Program (AMP) uses a framework built on the Collective Impact collaboration model that enables AMP partners to innovate, plan, and implement strategies that significantly increase NH's community colleges (CC) as a source for future workers and leaders in AM.

Specifically, this proposal addresses the pressing need for increasing numbers of AM workers through strategies designed to increase the retention of low socioeconomic status (LSES) students in CC STEM degree programs. AMP coordinates four key implementation strategies: 1) Co-requisite remediation within mathematics and quantitative reasoning; 2) Guided Pathways mentorship with "high touch" advising and student guidance resources that combines clearly defined academic pathways leading to 4-year college transfer and job placement; 3) paid work-based learning (WBL) experiences in industry and academic research; and 4) mentor inclusiveness training to prepare the workplace and academic settings to receive LSES students into a supportive climate. Successfully coordinating these four components through the process of Collective Impact collaboration will lead to a flexible and integrated AM workforce pipeline that serves CC AM students, AM industry partners, and the state as a whole. Findings will be disseminated to academic, business, and government stakeholders in NH, the region, and nationally to inform and improve broadening participation initiatives.
DATE: -
TEAM MEMBERS: Palligarnai Vasudevan Stephen Hale Brad Kinsey Leslie Barber Melissa Aikens
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
DATE: -
TEAM MEMBERS: Emily Edwards Curtis Suplee
resource project Professional Development, Conferences, and Networks
The purpose of this proposal is to convene scholars at a two-day conference to closely examine validity-related measurement issues, create a guidelines for the field of mathematics education research that addresses key ideas (e.g., validity, validity arguments, evidence for validity and measurement at-scale), and set a clear pathway for scholars to discuss quantitative measurement within mathematics education. Invitees will include a mix of young, older and diverse scholars in mathematics education research. Products include refereed journal articles along with a website.

The workshop will engage the Mathematics Education, Policy, Statistical, Psychometrics and other education research communities in examining and critiquing measurement validity evidence of mathematics education research with the long-term goal of increasing the quality of quantitative inference in mathematics education research (to include improvements in the training of doctoral students).
DATE: -
TEAM MEMBERS: Jonathan Bostic Michele Carney
resource research Media and Technology
Formal readings and lectures are effective at delivering explanations, but the information they impart can be so densely packed and de-contextualized that students may not make full sense of the content. Arena and Schwartz found that video games have the potential to unlock the expository content delivered by lectures, textbooks, and diagrams.
DATE:
TEAM MEMBERS: Nicole Bulalacao