This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Math is everywhere in the world, but youth may see math as disconnected from their everyday experiences and wonder how math is relevant to their lives. There is evidence that informal math done by children is highly effective, involving efficiency, flexibility, and socializing. Yet, more is needed to understand how educators can support math engagement outside of school, and the role these out-of-school experiences can play relative to the classroom and lifelong STEM learning. This Innovations and Development Project seeks to conduct research on a location-based mobile app for informal mathematics learning. This research takes place at 9 informal learning sites and involves iteratively designing an app in which learners can view and contribute to an interactive map of math walk “stops” at these sites. Learners will be able to select locations and watch short videos or view pictures with text that describe how mathematical principles are present in their surroundings. For example, learners could use the app to discover how a painting by a local Latino artist uses ratio and scale, or how a ramp in downtown was designed with a specific slope to accommodate wheelchairs. Research studies will examine the affordances of augmented reality (AR) overlays where learners can hold up the camera of their mobile device, and see mathematical representations (e.g., lines, squares) layered over real-world objects in their camera feed. Research studies will also examine the impact of having learners create their own math walk stops at local informal learning sites, uploading pictures, descriptions, and linking audio they narrate, where they make observations about how math appears in their surroundings and pose interesting questions about STEM ideas and connections they wonder about.
This project draws on research on informal math learning, problem-posing, and culturally-sustaining pedagogies to conduct cycles of participatory design-based research on technology-supported math walks. The research questions are: How does posing mathematical scenarios in community-imbedded math walks impact learners’ attitudes about mathematics? How can experiencing AR overlays on real world objects highlight mathematical principles and allow learners to see math in the world around them? How can learners and informal educators be engaged as disseminators of content they create and as reviewers of mathematical content created by others? To answer these questions, five studies will be conducted where learners create math walk stops: without technology (Study 1), with a prototype version of the app (Study 2), and with or without AR overlays (Study 3). Studies will also compare children's experiences receiving math walk stops vs. creating their own stops (Study 4) and explore learners reviewing math walk stops made by their peers (Study 5). Using a community ethnography approach with qualitative and quantitative process data of how youth engage with the app and with each other, the project will determine how the development of math interest can be facilitated, how learner-driven problem generation can be scaffolded, and under what circumstances app-based math walks are most effective. The results will contribute to research on the development of interest, problem-posing, informal mathematics learning, and digital supports for STEM learning such as AR. This project will promote innovation and have strategic impact through a digital infrastructure that could be scaled up to support STEM walks anywhere in the world, while also building a local STEM learning ecosystem among informal learning sites focused on informal mathematics. This project is a partnership between Southern Methodist University, a nonprofit, talkSTEM that facilitates the creation of community math walks, and 9 informal learning providers. The project will directly serve approximately 500 grades 4-8 learners and 30-60 informal educators. The project will build capacity at 9 informal learning sites, which serve hundreds of thousands of students per year in their programming.
This Innovations in Development project is supported by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
Informal STEM learning environments, programs, and policies can be designed to support and promote neurodiversity through inclusive practices. This project will explore the benefits of informal STEM learning for K-12 neurodiverse learners through a systematic review and meta-analysis of extant literature and research grounded in the theory of social model of ability. This framework is an asset-based approach and aims to promote social, cognitive, and physical inclusion, leading to positive outcomes. Using various quantitative and qualitative methodologies, this project endeavors to collect and synthesize the evidence for supporting and enhancing accessibility and inclusiveness in informal STEM learning for K-12 neurodiverse learners. It will explore key features of informal STEM learning and effective, evidence-based strategies to effectively engage children and youth with neurological conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), dyslexia, and dyspraxia, in informal STEM learning environments. The findings of this complex synthesis will provide a timely contribution to deeper understanding of supports for neurodiversity while also highlighting areas that inform further research, shifts in practice, and policy.
The systematic review will occur over a two-year period. It will focus on identifying program elements that promote inclusion of children and youth with neurodevelopmental disabilities in informal STEM learning contexts. Specifically, the review will explore two overarching research questions and several sub-research questions:
RQ1. What program elements (teaching and learning variables) in informal STEM learning settings facilitate inclusion of K-12 neurodiverse STEM learners? Sub-RQ1a: What are the overlapping and discrete characteristics of the program elements that facilitate social, cognitive, and physical inclusion?
Sub-RQ1b: In what ways do the program elements that facilitate inclusion vary by informal STEM learning setting?
RQ2: What program elements (teaching and learning variables) in informal STEM learning settings are correlated with benefits for K-12 neurodiverse STEM learners? Sub-RQ2a: What are the overlapping and discrete characteristics of the program elements that correlate with increased STEM identity, self- efficacy, interest in STEM, or STEM learning?
Sub-RQ2b: In what ways do the program elements that correlate with positive results for students vary by informal STEM learning setting? The research synthesis will consider several different types of studies, including research and evaluation; experimental and quasi-experimental designs; quantitative, qualitative, and mixed methods; and implementation studies.
The research team will (a) review all analyses and organize findings to illustrate patterns, factors, and relationships, (b) identify key distinctions and nuances derived from the contexts represented in the literature, and (c) revisit and confirm the strength of evidence for making overall assertions of what works, why, and with whom. The findings will be disseminated in practice briefs, journal articles, the AISL resource center, as well as presentations and materials for researchers, practitioners, and informal STEM leaders. Ultimately, this work will result in a comprehensive synthesis of effective informal STEM learning practices for neurodiverse K-12 learners and identify opportunities for further research and development.
This literature review and meta-analysis project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.
BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.
A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.
This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Apsáalooke (Crow Indian) Nation in Montana, as well as other Indigenous communities across the United States, disproportionally experience negative consequences from water-related environmental hazards, such as contaminated water. In this project, fifth- and sixth-grade Apsáalooke youth will act as change agents through investigating water issues in their communities and presenting findings to their communities. They will conduct this water-related research in the context of an informal summer program designed to integrate Indigenous and Western perspectives on science. For example, youth will learn the cultural significance of water sites while also practicing methods for collecting and analyzing data relative to those sites, guided by Apsáalooke elders and science professionals. During the summer program, Indigenous high school students and tribal college students will mentor the youth. To develop this program, the project team will conduct interviews with elders and Apsáalooke community members in scientific fields to determine the desired features of a program that integrates Indigenous and Western science. They will use the findings from these interviews to develop a multimedia toolkit, which includes a set of comprehensive materials that will enable other researchers and informal educators to implement similar programs. This toolkit will include information about water science and water quality, lesson plans and related resources for the summer program, professional development materials to prepare the high school youth to act as mentors, handouts for family members to facilitate at-home engagement with their children, and more. The project team will research how the implementation of the toolkit influences the participants' water-related knowledge and attitudes toward science. The toolkit, and the associated empirical findings, will be disseminated widely through local, regional, and national professional networks that serve American Indians.
Montana State University, in partnership with Little Big Horn College, will implement and research an informal summer program for Apsáalooke youth in the fifth and sixth grades, as well as a mentorship program for Indigenous high school students and tribal college students. The older students will participate in a four-week internship program in which they learn about conducting water research and facilitating science activities that foreground Apsáalooke perspectives and cultural practices. The high school and tribal college students will partner with Apsáalooke elders and science professionals to facilitate and implement a two-week summer program for the fifth- and sixth-grade youth. This program will use the toolkit materials that were previously developed in consultation with elders and other community stakeholders. Regression analyses of validated pre- and post-surveys, as well as inductive analyses of interviews with stakeholders, will be used to study how the mentoring program affects the high school and tribal college students' attitudes toward science and career interests, and how the summer program affects the fifth- and sixth-graders' water-related knowledge. The research team will also study how youth participation in the program affects their family and community members' water-related knowledge. This project will result in a multimedia toolkit, freely available to the public and widely disseminated through professional networks, which specifies how other informal educators and researchers can implement similar mentorship programs and summer programs for Indigenous youth. Ultimately, this project will broaden participation through resulting in empirically-tested materials that advance practice in informal education for Indigenous youth and their communities. This project is funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (science, technology, engineering, and mathematics) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Museums and similar informal learning settings offer opportunities for children and families to learn together in an engaging way. Current exhibits rely mainly on parents, teachers, signage, and staff in science museums to provide support and guidance. Since it is not always feasible to have knowledgeable staff on hand and not all parents have the same knowledge and background, children receive varied support and people often miss the point of the learning experience or activity. This project will develop and research a new genre of Smart Science Exhibits that use artificial intelligence (AI) in an adaptive system to support children in learning science by doing science. The aim of the project is to incorporate AI adaptivity and personalization to maximize inquiry-based STEM learning and engagement in informal learning settings. This research builds on the project team's first Smart Science Exhibit (EarthShake), which uses AI vision to give interactive feedback to visitors based on their actions and guides them through scientific inquiry. In the project's preliminary work, the first smart exhibit demonstrated higher engagement and more learning gains than resulted from a traditional museum exhibit addressing the same scientific content. Smart exhibits can extend and enhance the limited support that staff and parents can provide. This project will develop and investigate adaptive approaches to mixing exploration and AI guidance, which will personalize feedback during constructive exploration. The project will build on learning science techniques and technology, proven in intelligent tutoring systems in formal settings, and apply this to different informal learning contexts. The goal is to provide just-in-time learning support, which will extend the time visitors spend with exhibits, thereby deepening inquiry-based science learning. The project is partnering with science museums and afterschool programs, which will enable thousands of children and families from a wide variety of backgrounds to use the project's smart exhibits each year. Smart Science Exhibits is funded by the Advancing Informal STEM Learning (AISL) program which supports innovative research, approaches, and resources as part of its overall strategy to enhance learning in informal environments.
Many informal learning settings are considering mixed-reality (MR) technologies to increase engagement and understanding of science. Using Smart Science Exhibits, the project will investigate how design choices in mixed-reality systems impact users' engagement and learning of STEM concepts. (Mixed reality is the blending of the physical world and the digital world, enabling interaction between human and artificial intelligence.) Project research will extend current research, which is largely descriptive, by investigating empirical results on learner outcomes. Key research questions are: What types of adaptivity and personalization can improve Smart Science Exhibits and MR systems generally? What balance of exploration and AI guidance is best to maximize enjoyment, engagement and learning? Do findings about the effective features of Smart Science Exhibits generalize to different content areas and informal learning settings? The project will employ user-centered design research, formative evaluation, and controlled experimentation to discover how mixed-reality systems should be designed to best meet visitor and staff needs in informal learning settings including multiple museums and afterschool providers. Data on learner behaviors in mixed-reality experiences in a variety of informal settings will inform the design of Smart Science Exhibits. The project will investigate whether adaptive approaches generalize across content and context to achieve better STEM learning, engagement, collaboration, and productive dialogue. The project will incorporate the team's prior technical research, which developed both vision techniques to track children's physical interactions and interactive pedagogical techniques to provide scaffolds for and reactive feedback on children's inquiry and construction behaviors. New technical research will develop AI techniques for adaptive task selection and personalized feedback that draws on a visitor's history of interaction. Project research and design resources will be widely shared with the science museum educators and designers through presentations at annual conferences and with researchers, developers and others through peer-reviewed journal publications and professional publications.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Nesra YannierScott HudsonKen Koedinger
A makerspace is a place where participants explore their own interests and learn by creating, tinkering, and inventing artifacts through the use of a rich variety of tools and materials. This project will develop and research a flexible model for makerspaces that can be adapted to local settings to support informal STEM learning for hospitalized, chronically ill patients in pediatric environments who are predominantly youth of color from low-income backgrounds. These youth are subject to health disparities and healthcare inequities. Their frequent absence from school and other activities disrupt friendship formations, reduce their opportunities for social support, reduce their access to environments where they can feel a sense of self-agency through learning and creative activities. Through patient centered co-design, this project will build adaptable STEM makerspace environments conducive to STEM-rich learning, the exercise of self-agency, and development of STEM identity. Project design will focus on the sensitive nature of working with vulnerable populations (i.e., immunocompromised patients). The project will develop and disseminate several resources: (1) a flexible makerspace model that can be adapted to work in different pediatric settings; (2) research methods for conducting research in highly sensitive environments with and alongside young patients; and (3) professional development resources and a playbook including guidebook and facilitators guide that will articulate principles and processes for designing, implementing and sustaining makerspaces in pediatric settings. These resources will be widely disseminated through maker and other informal STEM networks.
The project will pursue two innovations. First, the project will develop the physical design of adaptable informal STEM makerspaces in pediatric settings. Second, the project will develop innovative patient-centered methodologies for studying approaches to physical design and the effects of makerspace installations for informal STEM-learning, self-agency, and STEM identity development. Using a design-based research approach, the project will investigate: (1) the extent to which physical makerspace designs support access to material, relational, and ideational resources for STEM-learning and well-being; (2) the extent to which makerspace installations, researchers, and medical care staff support patients in accessing and generating tools and other resources for personal learning and a sense of agency; and (3) the extent to which makerspace design with a focus on affording material, relational, and ideational resources provide rich opportunities for young patients to explore their own interests and cultivate STEM identities. One of the project's innovations, beyond development of adaptable makerspace model involves developing an innovative patient-centered methodology for conducting educational research toward broadening participation in STEM in highly sensitive medical care environments. The project will employ a mixed-methods research design and collect a variety of data to address these areas of research including documentation of makerspace design plans and renderings, observational data gathered through fieldnotes, video and audio recordings, informal interviews with patients, their families, and child-care staff, and patient generated artifacts. Articles for researchers and practitioners will be submitted for publication to appropriate professional journals and peer-reviewed publications.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
While there is increased interest in youth-centered maker programs in informal educational contexts, scarce research-informed professional development exist that focus on how informal educators do or should plan and handle ongoing, just-in-time support during moments of failure. Prior research supports the important role of failure in maker programming to increase learning, resilience and other noncognitive skills such as self-efficacy and independence. The objective of this project is to address this gap through adapting, implementing, and refining a professional development program for informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in maker programs in informal learning contexts. In the first two years of the project, the research team will work closely with six partners to implement and refine the professional development model: The Tech Museum of Innovation, The Bakken Museum, Montshire Museum of Science, The Minneapolis Institute of Art, Thinkery, and Amazeum Children’s Museum. In the last year of the project, the team will scale-up the professional development model through partnering with an additional nine institutions implementing maker programming for youth. The professional development consists of two models. In the first model, we support one to two lead facilitators at each partnering institution through an initial three-day workshop and ongoing support meetings. In the second model, the lead facilitators support other informal educators at their institution implementing making programs for youth. This project will enhance the infrastructure for research and education as collaborations and professional learning communities will be established among a variety of informal learning institutions. The project will also demonstrate a link between research and institutional and societal benefits through shifting the connotation and perceptions of failure to be valued for its educational potential and to empower informal educators to support discomfort and struggle throughout maker programs with youth.
The three goals of this collaborative project are to (a) advance the field of informal education through a research-based professional development program specific to youths’ failures during maker programs; (b) support shifts in informal educators’ facilitation practices and perspectives around youth’s failure experiences, and (c) investigate the effects of the professional development on youths’ resilience and failure mindset. The iterative nature of this project will be informed by the collection and analysis of video data of professional development sessions and informal educators facilitating maker programs, reflective journaling, surveys regarding the professional development, and pre-post surveys from youth engaged in the maker programs. Dissemination will address multiple stakeholders, including informal educators, program developers, evaluators, researchers, and public audiences.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.
The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.
This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The University of South Carolina will develop and research an educational program in the Southeastern United States designed to recognize and foreground the scientific contributions of the descendants of West Africans and West Indians. Though these contributions have been vital to many scientific enterprises, including land stewardship and aquaponics, they have remained largely underappreciated in educational programs. To address this issue, this project will develop an informal science education program for youth from Gullah/Geechee communities whose ancestors were formerly enslaved West African and West Indian peoples. Across centuries, Gullah/Geechee people have developed historical and contemporary scientific, engineering, and technological practices that enabled the mastery of fishing and the cultivation of numerous crops across barrier islands and coastal cities from North Carolina to Florida. Guided by Gullah/Geechee scholars and community members, pre-service and in-service teachers will co-design culturally sustaining summer programs, which provide Gullah/Geechee youth with opportunities to engage in culturally-embedded scientific and engineering practices as they learn about numerous STEM (science, technology, engineering, and mathematics) career pathways related to these practices. The University of South Carolina will host these summer programs in partnership with the historic Penn Center, an African American historical and cultural institution, and in partnership with the Belle W. Baruch Institute for Marine and Coastal Sciences, a research organization dedicated to improving the management of marine and coastal resources. Researchers will study how the in-service and pre-service teachers enact pedagogies that sustain Gullah/Geechee cultural practices. They will also study how the Gullah/Geechee youth share their understandings of culturally-embedded scientific content through creating iMovies and through giving community presentations hosted by the Penn Center, Baruch Institute, and other community partners. This project will advance knowledge on broadening participation in STEM (science, technology, engineering, and mathematics) career pathways in informal settings through culturally sustaining pedagogies. This project will also advance partnerships through illuminating how different institutions and stakeholders?such as community leaders, cultural centers, university educator programs, and scientific research organizations can work together to support culturally-embedded learning across informal settings.
The University of South Carolina will conduct a mixed-method study grounded in principles of design-based research and community-based participatory research. Pre-service and in-service teachers from underrepresented groups will participate in an immersive two-year professional development experience during which they co-design and teach culturally sustaining summer programs with Gullah/Geechee scholars and leaders. In these programs, fifth- and sixth-grade Gullah/Geechee youth will engage in project-based learning by applying historical and contemporary scientific practices grounded in Gullah/Geechee cultures. Guided by cultural mentors, youth will engage in STEM practices similar to those of STEM professionals in the community. Researchers will study how the educators understand and apply culturally sustaining pedagogies by using constant comparative analytic methods to analyze transcripts from observations and interviews, as well as the educators' work materials (e.g., lesson plans). They will also study how the youth convey their understandings of culturally-embedded scientific content and practices by using constant comparative and multimodal analysis to analyze transcripts from interviews and observations, as well as youth-generated artifacts such as the iMovie. Additionally, pre- and post-tests will enable the research team to determine changes to the youths' understandings of scientific content and perceptions regarding participation in STEM enterprises and careers. Deliverables, such as youth-generated products, will be shared with local media and with relevant cultural centers, while empirical results will be widely disseminated through local and national conferences. This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts, and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers. This project is also co-funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Potential STEM talent is lost each day for some of the most underserved and underrepresented populations in our nation's incarcerated men, women, and youth. With years devoid of quality STEM education and opportunities while in prison, incarcerated individuals are often significantly underprepared in STEM and for the STEM workforce. This educational debt exacerbates the pattern of marginalization for these vulnerable populations. Their STEM literacy, employability and potential for earning sustainable wages upon release are stifled. This deficit in opportunity is especially stark for underrepresented groups in the United States. Roughly 61% of the prison population is non-white, which far exceeds the national average of 35%. The U.S. also has the highest per capita incarceration rates in the world, incarcerating 698 men, women, and youth for every 100,000 people. Equally unsettling, for the first time in American history the population growth rate for incarcerated women has outpaced men by almost 2 to 1 for the past 25 years. While there are many contributing factors to the high rate of incarceration in the U.S., high quality prison STEM education programs have been shown to help counter socio-economic and education debts through greater STEM knowledge attainment, successful societal integration, and increased wage and advancement potential, which increase the likelihood that formerly incarcerated individuals and their children can live productive lives. The NSF INCLUDES STEM Opportunities in Prison Settings (STEM-OPS) Alliance endeavors to build a national network aimed at providing and supporting viable pathways to STEM for the incarcerated and formerly incarcerated. Using a collective impact approach, the Alliance will work collaboratively with key stakeholders and the target population to advance extant and untapped knowledge on high quality prison STEM education and opportunities. This work builds on efforts supported by the National Science Foundation, including exploratory work piloted by two NSF INCLUDES Design and Development Launch Pilots. If successful, this Alliance has the potential to significantly transform the face of the STEM workforce and the narrative regarding the incarcerated and formerly incarcerated and their potential to succeed in STEM.
The STEM-OPS Alliance is comprised of partner organizations committed to ensuring that STEM preparation during and post incarceration is commonplace and successful. During its first year, the Alliance will focus on establishing its national network through a shared vision and goals and a collective impact approach. It will conduct systems ecology mapping to inform the supports and resources needed for the target population to succeed in STEM. Focus groups and interviews will be conducted with incarcerated middle/high school aged youth to better understand their experiences in K-12 schools and with STEM education prior to and during incarceration. The results of the mapping and youth study will be used to inform the future work of the Alliance. Affordances the network endeavors to achieve include: (a) creating accessible STEM opportunities for the target populations through STEM courses, in-prison laboratories, research experiences for undergraduates (REUs), internships, and mentoring, (b) a culturally responsive platform to connect formerly incarcerated job seekers with STEM employment opportunities, (c) an evidence-based toolkit for effective STEM in-prison program design and implementation, (d) an annual convening of key stakeholders and representatives from the target populations to share learnings, disseminate findings and resources, and support the growth and development of the Alliance, and (d) leveraging connections to the greater NSF INCLUDES National Network. A formative and summative evaluation will be conducted by an external evaluator. Through its network, the STEM OPS Alliance is well poised to directly impact 700-880 incarcerated and formerly incarcerated men and women and reach a significant number of organizations working to improve STEM opportunities and outcomes within prison contexts.
This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. Significant co-funding has also been provided by the NSF Innovative Technology Experiences for Students and Teachers (ITEST) program and the NSF Advancing Informal STEM Learning Program (AISL).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Eden BadertscherStanley AndrisseJannette CareyRich Milner
Well-designed out-of-school time experiences can provide youth with rich opportunities to learn. However, to design effective out-of-school time experiences, it is critical to have a research basis that clarifies the features of programs that support increased youth engagement that then leads to better outcomes for youth. This project explores the features of programming that integrates sports, mathematics and science concepts, and growth mindset for 4th through 8th grade aged Latinx and African American youth. To accomplish this, the investigators refine curricular resources for out-of-school time programs and develop a model for professional learning experiences for informal educators and facilitators to support their implementation of integrated sports and STEM programming. To identify critical features of the programming, the researchers explore the ways that the program activities are implemented in two different contexts as well as the impact of the programming on youth participants' mindset, understanding of science and mathematics concepts, STEM interests, and self-perceived science and mathematics abilities. Additionally, researchers will explore the ways that the sports-themed programming supports (or could better support) girls' engagement.
The project builds on the University of Arizona researchers' existing partnerships with Major League Baseball (MLB) and Boys/Girls Club programs and an existing school-based MLB program for schools to (a) expand and refine Science of Baseball activities to enhance engagement among girls and incorporate growth mindset experiences that focus on the value of effort, determination, and learning from mistakes in both athletics and STEM; (b) study the enactment and outcomes of the program with 4th-8th grade aged youth in the two distinct informal learning settings; and (c) develop and refine a model for professional learning that includes in-person and on-line components for training informal STEM learning facilitators. The work will focus on two study contexts: afterschool programs of Boys and Girls Clubs in AZ, CA, and MO and summer programs of MLB in CA and MO. Participants will include 300 youth and up to 28 informal STEM learning facilitators split across the two contexts. Design-Based Implementation Research (DBIR) will be used to a) iteratively refine the activities and professional development model, and b) study the enactment and outcomes of the program. Research questions focus on outcomes for youth participants (i.e., impact on growth mindset, STEM dispositions, and understanding of science/math concepts), and the elements of effective professional development for informal STEM educators. Outcomes of the project include empirical evidence of what works and what doesn't work in the design, implementation, and professional development for STEM learning programs that integrate sports and growth mindset principles. In addition, outcomes of the project will advance knowledge of how different out-of-school program structures with similar sports-focused STEM programming can similarly (or differentially) support youth learning.
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Computing and computational thinking are integral to the practice of modern science, technology, engineering, and math (STEM); therefore, computational skills are essential for students' preparation to participate in computationally intensive STEM fields and the emerging workforce. In the U.S., Latinx and Spanish speaking students are underrepresented in computing and STEM fields, therefore, expanding opportunities for students to learn computing is an urgent need. The Georgia Institute of Technology and the University of Puerto Rico will collaborate on research and development that will provide Latinx and Spanish speaking students in the continental U.S. and Puerto Rico, opportunities to learn computer science and its application in solving problems in STEM fields. The project will use a creative approach to teaching computer science by engaging Latinx and Spanish speaking students in learning how to code and reprogram in a music platform, EarSketch. The culturally relevant educational practices of the curriculum, as a model for informal STEM learning, will enable students to code and reprogram music, including sounds relevant to their own cultures, community narratives, and cultural storytelling. Research results will inform education programs seeking to design culturally authentic activities for diverse populations as a means to broaden participation in integrated STEM and Computing. This Broad Implementation project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including multiple pathways for broadening access to and engagement in STEM learning, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
As part of the technical innovation of the project, the EarSketch platform will be redesigned for cultural and linguistic authenticity that will include incorporating traditional and contemporary Latin sound beats and musical samples into the software so that students can remix music and learn coding using sounds relevant to their cultures; and developing a Spanish version of the platform, with a toggle to easily switch between English and Spanish. Investigators will also develop an informal STEM curriculum using best practices from Culturally Relevant Education and Cultural Sustaining Pedagogy that provides authentic, culturally and linguistically rich opportunities for student engagement by establishing direct and constant connections to their cultures, communities and lived experiences. The curriculum design and implementation team will work collaboratively with members of Latinx diverse cultural groups to ensure semantic and content equivalency across diverse students and sites. Validating the intervention across students and sites is one of the goals of the project. The model curriculum for informal learning will be implemented as a semester long afterschool program in six schools per year in Atlanta and Puerto Rico, and as a one-week summer camp twice in the summer. The curricular materials will be broadly disseminated, and training will be provided to informal learning practitioners as part of the project. The research will explore differences in musical and computational engagement; the interconnection between music and the computational aspects of EarSketch; and the degree to which the program promotes cultural engagement among culturally and linguistically heterogenous groups of Latinx students in Atlanta, and more culturally and linguistically homogenous Latinx students in Puerto Rico. Investigators will use a mixed method design to collect data from surveys, interviews, focus groups, and computational/musical artifacts created by students. The study will employ multiple case study methodology to analyze and compare the implementation of the critical components of the program in Puerto Rico and Atlanta, and to explore differences in students' musical and computational thinking practices in the two regions. Results from the research will determine the impact of the curriculum on computer science skills and associated computational practices; and contribute to the understanding of the role of cultural engagement on educational outcomes such as sense of belonging, persistence, computational thinking, programming content knowledge and computer science identity. Results will inform education programs designing culturally authentic and engaging programming for diverse populations of Latinx youths.
DATE:
-
TEAM MEMBERS:
Diley HernandezJason FreemanDouglas EdwardsRafael Arce-NazarioJoseph Carroll-Miranda