The Louisiana State Museum and Tulane University/Xavier University Center for Bioenvironmental Research and the University of Rhode Island Graduate School of Oceanography, along with several other research collaborators, designers, evaluators, and the Times-Picayune newspaper are partnering to develop a multi-pronged approach on educating the general public, school children, teachers and public officials on the STEM-related aspects of Hurricane Katrina and its implications for the future of New Orleans and other parts of the country. The major products will be an 8,500 square-foot semi-permanent exhibit, smaller exhibits for Louisiana regional libraries, a comprehensive Web site on hurricanes, a set of studies on informal learning, a case study for public officials about the relevance of science research to policy and planning, teacher workshops, and a workshop for interested exhibit designers from around the country. This project advances the field of informal science education by exploring how museums, universities, and their communities can work together to provide meaningful learning experiences on STEM topics that are critical to solving important community and national issues.
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickJohn MaedaYasmin Kafai
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
Today we have access to an almost inconceivably vast amount of information, from sources that are increasingly portable, accessible, and interactive. The Internet and the explosion of digital media content have made more information available from more sources to more people than at any other time in human history. This brings an infinite number of opportunities for learning, social connection, and entertainment. But at the same time, the origin of information, its quality, and its veracity are often difficult to assess. This volume addresses the issue of credibility—the objective and
Young people's use of digital media may result in various innovations and unexpected outcomes, from the use of videogame technologies to create films to the effect of home digital media on family life. This volume examines the core issues that arise when digital media use results in unintended learning experiences and unanticipated social encounters. The contributors examine the complex mix of emergent practices and developments online and elsewhere that empower young users to function as drivers of technological change, recognizing that these new technologies are embedded in larger social
It may have been true once that (as the famous cartoon of the 1990s put it) "Nobody knows you're a dog on the Internet," and that (as an MCI commercial of that era declared) on the Internet there is no race, gender, or infirmity, but today, with the development of web cams, digital photography, cell phone cameras, streaming video, and social networking sites, this notion seems quaintly idealistic. This volume takes up issues of race and ethnicity in the new digital media landscape. The contributors address this topic—still difficult to engage honestly, clearly, empathetically, and with
As young people today grow up in a world saturated with digital media, how does it affect their sense of self and others? As they define and redefine their identities through engagements with technology, what are the implications for their experiences as learners, citizens, consumers, and family and community members? This volume addresses the consequences of digital media use for young people’s individual and social identities. The contributors explore how young people use digital media to share ideas and creativity and to participate in networks that are small and large, local and global
This article offers findings from a learning sciences-informed evaluation of a nanoscience and nanotechnology exhibition called Nano-Aventura (NanoAdventure), based on four interactive-collaborative games and two narrated videos. This traveling exhibition was developed in Brazil by the Museu Exploratório de Ciências for children and teenagers (ages 9 to 14), but it was also open to the general public. We report findings from a mixed-methods study incorporating questionnaires completed by visiting school children (n=814) and the general public (n=338) and interviews with school visitors (n=23)
DATE:
TEAM MEMBERS:
Museu Exploratorio de CienciasSandra MurrielloMarcelo Knobel
What are the effects of globalization and how are these manifested in local communities and in the learning of science there? These questions are unpacked within one local community in the United States, a place called “Uptown” where I examine the educational opportunities and pathways in science that are available for low-income Black American girls. The data comes from eight years of work both as an after-school science education program director and researcher in Uptown. The results suggest that globalization is taking hold, both in the social and economic circumstances of the community and
The middle grades are a crucial time for girls in making decisions about how or if they want to follow science trajectories. In this article, the authors report on how urban middle schoolgirls enact meaningful strategies of engagement in science class in their efforts to merge their social worlds with the worlds of school science and on the unsanctioned resources and identities they take up to do so. The authors argue that such merging science practices are generative both in terms of how they develop over time and in how they impact the science learning community of practice. They discuss the
The article discusses the significance of student's participation in a wireless, handheld field trip in the U.S. It is a program that comprises of a mix of podcasts, student multimedia creation, Web research and interviewing, designed by the Harvard Graduate School of Education. The innovation is vital to students' learning because it will allow them to interact with museum exhibits in a guided yet exploratory way and to increase both the amount of time students spend at exhibits and the depth of engagement with each exhibit. It revealed that in a museum setting, the technology can be used to
DATE:
TEAM MEMBERS:
Aliece WellerJohn BickarPaul McGuiness
In this paper we describe the design and initial evaluation of a tangible computer programming exhibit for children on display at the Boston Museum of Science. We also discuss five design considerations for tangible interfaces in science museums that guided our development and evaluation. In doing so, we propose the notion of passive tangible interfaces. Passive tangibles serve as a way to address practical issues involving tangible interaction in public settings and as a design strategy to promote reflective thinking. Results from our evaluation indicate that passive tangibles can preserve
DATE:
TEAM MEMBERS:
Michael HornErin SoloveyRobert Jacob