The Educational Develpoment Center (EDC) and National Institute on Out-of-School Time (NIOST), in collaboration with science centers in AZ, MA, TX, NY, NC and CA, will develop and implement a science curriculum for informal audiences targeting children ages 8-12. Each science center will work with six community centers that serve youth in after-school programs. Science center staff will train after-school program leaders from the 36 community centers at monthly sessions, in addition to holding monthly events for families. Curriculum development will use interesting topics aligned with national standards and structure investigations as games using simple materials. The units will enable children to work in teams, and include follow-up, discussion and extended investigations using websites. It is anticipated that each child will complete 4-6 related investigations. While the six science centers will provide the content expertise, EDC and NIOST will develop the training and assessment program and provide additional technical support for the community centers. The result will be a model to support out-of-school programs that combines science centers and community resource people, centered around an activity-based curriculum focused on inquiry. Up to 1,000 children will be involved in field tests each summer. This proposal builds on "Design It!" (ESI 98-14765), which created an informal science curriculum focused on engineering principles.
This sixth through eighth grade comprehensive, project-based, science curriculum focuses on students acquiring deep understandings of the concepts, principles and habits of mind articulated in national science standards. The curriculum builds upon the experiences of the Center for Learning Technologies in Urban Schools developing the LeTUS modules for Chicago and Detroit Public Schools. The project brings together scientists and science educators from three universities, teachers and administrators from six school districts, curriculum speialists from Project 2061, educational researchers from EDC, and Kendall/Hunt publishers. The design principles, arising from research on teaching and learning, include alignment with standards, assessments, contextualization, sustained student inquiry, embedded learning technologies, collaboration, and scaffolds between and within modules. Phase 1 focuses on the development of two units: Structure of Matter and Diversity of Life and Evolution. Learning outcomes are identified, target understanding performances are specified and assessments are designed before the activities are developed. Everday authentic questions that students hold as important provide the basis for projects, contextualize the activities and give coherence to the curriculum. In addition to the student materials and teacher guides, the project develops materials to provide information to administrators and the community to understand and support the implementation of the modules. Issues of language, literacy, culture and diversity are addressed. Professional development materials address teacher attitudes and beliefs while educating the teachers about the new context and pedagogy.
The Science Museum of Minnesota would like to create a network of partnerships between the museum and small community-based science organizations (CBSOs). CBSOs will receive professional development workshops to increase their capacity to produce high quality exhibits and publications and offer effective science programming. A team from each science organization will participate in a 12-hour skills development workshop to cover such topics as exhibit development, audience research, science communication and program development. A workshop "tool kit" will capture the essence of the training workshops and be made available to other museums. Each team will develop a small traveling exhibit and supporting materials. Annual Science Summit programs will showcase the CBSOs to the general public, museum visitors and students, while a CBSO Roundtable will invite the participants to explore collaborations and programming strategies. An online database will be created and a complimentary printed resource guide of all local CBSOs will be available to the public. The model will be tested at two small science centers, the Kirby Science Discovery Center in Sioux Falls, SD, and at the Headwaters Science Center in Bemidji, MN. It is anticipated that 72 organizations and 450 CBSO staff members will be served by this project, in addition to over 5,000 members of the general public.
The North Carolina Museum of Life and Science will develop two areas in a new 70 acre outdoor exhibit "BioQuest Woods: Linking Animals and Plans with Interactive Exhibits". This concept is to pair live animals and plants in their natural setting with science center-style interactive exhibits to communicate key ideas in biology and physics. Support will go to sixteen interactive stations in two four-acre theme areas "Catch the Wind" and "Down to Earth". "Catch the Wind" will assist visitors in the exploration air movement and learning about how plants and animals use air in specialized ways. For example, visitors will experiment with air thermals while observing the behavior of birds of prey and will learn how prairie dogs exploit the venturi effect to ventilate their burrows. In the "Down to Earth" thematic area, visitors, simulate the activities of field biologists, will track bears equipped with radio collars, examine living invertebrates, among other activities. Scientific instruments, including microscopes, in kiosks will aid on-the-scene study of live animals and plans. "BioQuest Woods" will help visitors, teachers and students gain the realistic experience of scientific inquiry in a natural setting. Education programming will highlight curriculum linkages and fulfills the goals of North Carolina's new science curriculum. It directly addresses the State's competency-based goals requiring understanding of natural systems and the interrelations of the basic sciences. Pre and post-visit materials will be developed along with teacher guides and enhancement activities. This project is being developed with the cooperation of the Austin Nature Center, the National Zoo, and the Indianapolis Zoo.
DATE:
-
TEAM MEMBERS:
Roy GriffithsThomas Krakauer
resourceprojectProfessional Development and Workshops
The Lemelson Center for the Study of Invention in cooperation with the Playful Invention and Exploration Network (a consortium of six museums) will develop "Invention at Play." This will be a traveling exhibit in two sizes (3,500 sq. ft. & 1,500 sq. ft.) exploring the value of play and its critical role in the development of creative human beings. Audiences will a) learn how play fosters creative talents among children as well as adults; b) experience their own playful and inventive abilities; and c) understand how children's play parallels processes used by innovators in science and technology. The exhibit will be divided into three sections: 1) the "Invention Playhouse" where visitors will be offered a variety of creative play activities to help them understand how playing builds creative and inventive skills; 2) "Case Study Clusters" where visitors will learn about the playful habits of five inventors, and 3) "Issues in Invention and Play" where visitors learn about ideas and debates among theorists who have linked inventive processes to children's play. This exhibit is based on documentation collected by the Lemelson Center since 1995 from and about inventors of the past and present, and symposia they have organized to examine the characteristics of innovative processes. This research has led to new insights into remarkable parallels between children's play and the way inventors approach their work. A series of complementary educational activities and programs will be developed and documented in an Educational Manual. These programs will be aimed at diverse audiences including families, parents, teachers and other groups in science and children's museums nationwide and will help extend the impact of the exhibit theme beyond the exhibit itself. Teacher workshops will be developed and arranged for each venue along with a special teacher's manual that will be distributed during exhibit-related school events offering a variety of activities on the themes of inventive play, creative model of problem solving, and exemplary tales of playful events and habits in the lives of interesting American inventors. RK & Associates have done the front-end audience surveys for this project and will do the summative and remedial evaluation work. The exhibit prototyping will be done by the Science Museum of Minnesota exhibit contractors.
Family Science: Expanding Community Support for Inquiry-based Science is the University of Washington's innovative five-year plan for reaching youth and families in the Seattle school district. This program represents an enhancement of the NSF-funded Family Science program targeting grades K-5 and expansion of this successful program to include middle and high school students. The proposed activities, Science Explorations, Inquiry Science Conferences and Community Celebrations, are designed to help parents understand inquiry-based science instruction while heightening students' confidence in their ability to understand science processes. The hands-on activities also support and complement Seattle's Local Systemic Change project by enlisting teachers, parents and community members to champion science education outside of the formal school setting. The implementation strategy includes workshops to train Family Science Lead Teachers and Parent/Community Leaders to coordinate Family Science programs. Subsequent partnerships between teachers and community organizations are designed to establish regional clusters of community networks to support programmatic activities during and beyond the funding period. It is estimated that Family Science will result in the presentation of nearly 300 school and community-based events impacting 10,000 individuals.
DATE:
-
TEAM MEMBERS:
Leroy HoodEthan AllenDana RileyPatrick Ehrman
Thinking SMART is a comprehensive five-year program that will encourage young women to pursue careers in science, mathematics and technology. The project focuses on girls ages 12-18, and will especially target those who are underserved and underrepresented in the sciences, including girls from diverse backgrounds and persons with disabilities. Key elements include four science/engineering module options, a two-tiered mentoring component, training, resource materials, online activities and an awards program. The modules (Material Girls, Eco Girls, Galactic Girls, Net Girls), focus on engineering, ecology, physics and computer science respectively, and will be aligned with national standards. The modules are implemented during the school year and include weekly programming, a summer camp and a spring "Women in Science and Engineering" conference organized by girls. Weekly meetings are augmented by online activities, in which girls interact with other participants and mentors, publish reports and obtain career information. Additionally, participants who complete all four modules are eligible to become paid mentors for younger participants. Five publications will be produced to support the program, including manuals for mentors (both adults and youth), module activities, a parent guide and a guide for implementation sites on community partnerships. Thinking SMART materials will be developed and piloted tested at eight sites in conjunction with Girls, Inc. affiliates in Nashua, NH, Worcester, MA, Oakridge, TN and Shelbyville, IN, with input from the Society of Women Engineers. Extensive training will also be provided for pilot programs and future dissemination. Finally the E3 Awards Program will motivate implementation sites to create high quality local programs. It is anticipated that more than 1,500 Girls, Inc. affiliates will adopt "Thinking SMART."
DATE:
-
TEAM MEMBERS:
Brenda StegallJanet StantonHeather Johnston NicholsonShalonda MurrayJoe Martinez
Twin Cities Public Television, in association with Red Hill Studios, is producing and disseminating an Exploring Time television special and associated outreach material. The project will augment and leverage the Exploring Time traveling exhibit now being developed by the Science Museum of Minnesota (NSF grant #99-01919). The goal of both the exhibit and the television special is to increase the public's understanding of our world by revealing the unseen world of natural change -- the multitude of changes that are occurring in the present but at rates too slow or too fast to be seen. The television special will provide visual explorations of changes that take place over a vast range of timescales -- from billionths of seconds to billions of years. The television series and exhibit will be supplemented by a range of materials. Both low- and high-bandwidth, web-based material will be available and a teacher's guide will be developed for middle school classrooms. A "Time Explorers Toolkit" will be available to both formal and informal learners. This CD-ROM includes detailed, step-by-step instructions on how to create time-lapse movies. The project also will coordinate outreach with the Community Technology Centers Network, the organization that supports technology centers that serve individuals from underrepresented and low-income groups.
The Tech Museum of Innovation and Stanford University School of Medicine Department of Genetics have established longterm partnership to enable the public to draw connections between modern genetics research and choices they face about their health. Together we will develop, produce, evaluate, and disseminate Life's New Frontier, a dynamic exhibition which will inform the public about the goals and methods of modern genetics. Interactive permanent exhibits and guided learning centers, staffed jointly by museum educators and by working scientists (predominantly Stanford graduate students and postdoctoral fellows), will take the public into the minds and laboratories of scientists who are revolutionizing biomedical science. The exhibition and associated public and school programs will emphasize the emerging discipline of bioinformatics, which is fundamental to the Human Genome Project, gene-based diagnosis, rational drug design, and treatment of disease. Life's New Frontier will open in the summer of 2003 to reach an estimated 1.5 million diverse people annually through museum and online visitation. It will set a new standard for the treatment of cutting-edge science in exhibitions by establishing an infrastructure that permits rapid changes to exhibit content, and creating opportunities for visitors to receive personalized science and health updates after their visit. The exhibition also will serve as a platform to foster continuing personal interaction among middle and high school students, Stanford faculty and students, and the general public. The Tech/Stanford partnership will be maintained through staff liaison positions at each partner institution and will be evaluated to assess its effectiveness. We hope to extend this model to other departments at the Stanford University School of Medicine, and to disseminate it as a model for other science center/university partnerships in biomedical sciences. We anticipate significant outcomes of this partnership: the pblic will be better able to apply the ideas of modern genetics to decisions about their health; and a broad range of students from diverse backgrounds will be inspired to pursue biomedical education and research.