The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
The University of Chicago's Yerkes Observatory, the National Radio Astronomy Observatory, the University of North Carolina, the Astronomical Society of the Pacific, and 4-H are collaborating to provide professional development to 180 4-H leaders and other informal science educators, and engage 1,400 middle school youth in using research-grade robotic telescopes and data analysis tools to explore the Universe. Youth participating in 4H-based out-of-school programs in Wisconsin, West Virginia and North Carolina are learning about the universe and preparing for STEM careers by conducting authentic astronomy research, completing astronomy-related hands-on modeling activities, interacting with astronomers and other professionals who are part of the Skynet Robotic Telescope Network, and interacting with other youth who part of the Skynet Junior Scholars virtual community. The project is innovative because it is providing a diverse community of 4-H youth (including sight- and hearing-challenged youth and those from underrepresented groups) with opportunities to use high-quality, remotely located, Internet-controlled telescopes to explore the heavens by surveying galaxies, tracking asteroids, monitoring variable stars, and learn about the nature and methods of science. Deliverables include (1) online access to optical and radio telescopes, data analysis tools, and professional astronomers, (2) an age-appropriate web-based interface for controlling remote telescopes, (3) inquiry-based standards-aligned instructional modules, (4) face-to-face and online professional development for 4-H leaders and informal science educators, (5) programming for youth in out-of-school clubs and clubs, (6) evaluation findings on the impacts of program activities on participants, and (7) research findings on how web-based interactions between youth and scientists can promote student interest in and preparedness for STEM careers. The evaluation plan is measuring the effectiveness of program activities in (1) increasing youths' knowledge, skills, interest, self-efficacy, and identity in science, including youth who are sight- and hearing-impaired, (2) increasing educators' competency in implementing inquiry-based instruction and their ability to interact with scientists, and (3) increasing the number of Skynet scientists who are involved in education and public outreach.
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
The Virginia Institute of Marine Science (VIMS) and The Watermen's Museum, Yorktown, VA, will produce an underwater robotics research and discovery education program in conjunction with time-sensitive, underwater archeological research exploring recently discovered shipwrecks of General Cornwallis's lost fleet in the York River. The urgency of the scientific research is based upon the dynamic environment of the York River with its strong tidal currents, low visibility, and seasonal hypoxia that can rapidly deteriorate the ships, which have been underwater since 1781. Geophysical experts believe that further erosion is likely once the wrecks are exposed. Given the unknown deterioration rate of the shipwrecks coupled with the constraints of implementing the project during the 2011-2012 school-year, any delays would put the scientific research back at least 18 months - a potentially devastating delay for documenting the ships. The monitoring and studying of the historic ships will be conducted by elementary through high school-aged participants and their teachers who will collect the data underwater through robotic missions using VideoRay Remotely Operated Vehicles (ROVs) and a Fetch Automated Underwater Vehicle (AUV) from a command station at The Watermen's Museum. Students and teachers will be introduced to the science, mathematics, and integrated technologies associated with robotic underwater research and will experience events that occur on a real expedition, including mission planning, execution, monitoring, and data analysis. Robotic missions will be conducted within the unique, underwater setting of the historical shipwrecks. Such research experiences and professional development are intended to serve as a key to stimulating student interest in underwater archeological research, the marine environment and ocean science, advanced research using new technologies, and the array of opportunities presented for scientific and creative problem solving associated with underwater research. A comprehensive, outcomes-based formative and summative, external evaluation of the project will be conducted by Dr. L. Art Safer, Loyola University. The evaluation will inform the project's implementation efforts and investigate the project's impact. The newly formed partnership between the Waterman's Museum and VIMS will expand the ISE Program's objectives to forge new partnerships among informal venues, and to expand the use of advanced technologies for informal STEM learning. Extensive public dissemination during and after the project duration, includes but is not limited to, hosting an "Expedition to the Wrecks" web portal on the VIMS BRIDGE site for K-12 educators providing real-time results of the project and live webcasts. The website will be linked to the education portal at the Association for Unmanned Vehicle Systems International, the world's largest organization devoted to promoting unmanned systems and to the FIRST Robotics community through the Virginia portal. The website will be promoted through scientific societies, the National Marine Educators Association, National Science Teachers Association, and ASTC. Links will be provided to the Center for Archeological Research at the College of William and Mary and the Immersion Presents web portal--consultants to Dr. Bob Ballard's K-12 projects and JASON explorations. The NPS Colonial National Historic Park and the Riverwalk Landing will create public exhibits about the shipwreck's archeological and scientific significance, and will provide live observation of the research and the exploration technologies employed in this effort.
This CRPA project will develop a game for mobile devices called the "RapidGuppy". It provides users (students 12-21 years of age) with an interesting and fun way to learn details about biological adaptation and genetic change. The game teaches users about the environmental factors that lead to adaptation. More than 30 years of research on the Trinidadian Guppy that "rapidly" evolves (over 3-5 years) is the basis for the game. The research, databases, and mini-documentaries that support the "RapidGuppy" game are linked to allow users to easily delve deeper into these materials. An extensive social media campaign will be used to market the game and the public facing website. Partners in this endeavor include: University of California-Riverside, Habitat Seven, Magmic Inc., and Edu, Inc. In this project, the mobile device game will be backed by a sophisticated website that contains detailed research results from the field and mini-documentaries showing real fish and the actual research processes as well as researchers and scientists to promote role model development. Interested individuals may also directly access the videos and research results via the website. The target audiences are youth who are prone to play electronic games and the general public. The comprehensive evaluation plan will assess the learning outcomes resulting from the mini-documentaries, in-game content, and website, as well as the playability of the game and website functionality. Impacts resulting from the social media campaign and outreach to underserved audiences will also be measured. Because of the major social media campaign, this project may increase the level of interest in the science of evolution and genetic change, and raise awareness of STEM careers. If the user groups become excited about the game and the inherent messages, it is anticipated that the public will gain a better understanding of the factors responsible for genetic change.
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
Informal Community Science Investigators (iCSI) creates a network of four geographically diverse informal science institutions working together on strategies to engage youth ages 10-13 through location based augmented reality (AR) games played on smartphones. These high-interest, kid-friendly games will be used by families visiting the institutions and by youth who enroll in more intensive summer camp programs. Using AR games, participants will engage in playful but scientifically-grounded investigations drawing on each institution's research, exhibits, and natural spaces. For example, a botanical garden might engage young visitors through AR games with themes related to native and invasive species, while a zoo might create a game experience focusing on illegal wildlife trade. Participants in the iCSI summer camp program will have more intensive experiences, including work with the host institution's scientists, opportunities to develop original augmented reality games, and experiences with game-related service learning and citizen science programs. For both target groups (families and campers), the location specific games build understanding of both the institution's mission and the broader realm of scientific research and application. The project will test the notion of participants as "learner hero," the link between game play and the individual's development of competency, autonomy and the relationship to real world experience, in this case through community action on the subject of the game developed. To that end, participants will be encouraged to extend their involvement through related investigations on site and participation in community activities and projects that can be done at home. Social media tools such as Facebook and web sites managed by the host institutions will provide recognition for this extended engagement, helping participants maintain ties to the program. Additionally, program resources provide assistance to adult family members in nurturing and sustaining youth interest in STEM activities and careers. A major effort of the project will be development of a new software infrastructure called TaleBlazer for the augmented reality game that will enable teachers and students to develop their own game that incorporates real data collection and scientific model building. The new platform will enhance the game play platform MITAR developed with NSF funding.
Schools do not define education, and they are not the only institutions in which learning takes place. After-school programs, music lessons, Scouts, summer camps, on-the-job training, and home activities all offer out-of-school educational experiences. In Learning at Not-School, Julian Sefton-Green explores studies and scholarly research on out-of-school learning, investigating just what it is that is distinctive about the quality of learning in these “not-school” settings. Sefton-Green focuses on those organizations and institutions that have developed parallel to public schooling and have
DATE:
TEAM MEMBERS:
The MacArthur FoundationJulian Sefton-Green
Morehead Planetarium and Science Center has just started working on WILD BLUE: Using Fulldome Technology to Illustrate Aeronautics Principles, targeting school audiences from grades 3-8 as part NASA's CP4SMP+ program. Morehead will partner with NASA Langley Research Center as content advisors and Sky-Skan, Inc as content distributors. WILD BLUE's primary goal is to strengthen STEM education in the United States. WILD BLUE plans national distribution of a NASA-inspired media portfolio that supports formal and informal STEM education. The media portfolio targets grades 3-8, addresses National Science Education Standards, and includes two key deliverables: (1) a fulldome planetarium show that showcases aeronautics history and concepts, NASA's role in aeronautics research and related STEM careers (2) web-based curriculum materials that integrate current NASA curriculum materials, including Museum in a Box and Summer of Innovation activities. All WILD BLUE deliverables include NASA content -- the history, primary research and future plans of NASA's Aeronautics Research Mission Directorate (ARMD); imagery illustrating aeronautics concepts; information about STEM careers with NASA; and commentary from ARMD personnel. This four-year project ensures scientific accuracy, educational value and engaging presentation through an advisory board and an external evaluation process. WILD BLUE expects outcomes that include advancing NASA Strategic Goal 6 (participation, innovation, contribution) and NASA Education Goals, facilitating knowledge of NASA's role in aeronautics research, and expanding participation by underserved students in formal and informal science education.
This planning grant addresses the issue of students losing interest in STEM during the ages of 8-12 years. The PIs propose that STEM content provided through electronic media will be more readily accepted by youth because it is on their "home turf." IMX.org will be a new, highly engaging, online destination for tweens and kids at large. It is designed to leverage the Web 2.0 and tweens' fascination with media and popular culture, and to demonstrate the connections between the real world, everyday life, and STEM. The project will test a preliminary design with a focus group of 8-12 year-olds, convene a panel of experts and Advisory Board, and create a beta Web site to conduct formative research.
Climate Change Education produced climate change educational experiences for both professional and general public audiences. In particular, the Science Museum of Minnesota (SMM), in collaboration with NASA Goddard Institute for Space Studies (GISS), University of Minnesota’s Institute on the Environment, and the University of Wisconsin’s Cooperative Institute for Meteorological Satellite Studies (CIMSS), developed new content for SMM’s Earth Buzz online network, developed a climate change educational program for middle and high school teachers, invited audiences of policy- and decision-makers to SMM for climate change discussions, and recruited and mentored a climate change team of high school students through SMM’s Kitty Andersen Youth Science Center. The project goals were to increase the awareness and understanding in target audiences that (1) human activities are now surpass natural processes as driving forces of atmospheric change, (2) the behavior of Earth's atmosphere in the 21st Century will be increasingly determined by humans, and (3) human ingenuity is the key to adapting to and mitigating the climate changes underway. Highlights of the project included organizing and hosting the October 26-28, 2011 City of Saint Paul Climate Change Adaptation Scenario Planning Workshop, which catalyzed climate resilience as a city planning priority, organizing and hosting with Morris A. Ward, Inc. the October 5-6, 2012 Climate Change Science for Minnesota Broadcast Meteorologists workshop which brought together local TV and radio meteorologists with some of the best climate scientists in the U.S., helping to organize and host on November 7, 2013 the State of Minnesota’s first conference devoted exclusively to climate change adaptation, and the adoption by the museum of a public statement on climate change (www.smm.org/climatechange). The project endures although the grant has concluded through the continued delivery of the museum’s Climate Changed outreach program to a wide array of audiences and through the museum’s continued involvement with the many partnerships established during the Climate Change Education project, as exemplified by the museum working with the City of Saint Paul and Macalester College on an upcoming St. Paul Neighborhood Climate Adaptation Workshop and a Worldwide Views on Climate and Energy event (climateandenergy.wwviews.org/).