Skip to main content

Community Repository Search Results

resource project Media and Technology
The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
DATE: -
resource project Public Programs
"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE: -
TEAM MEMBERS: Robert Coulter Eric Klopfer Jere Confrey
resource evaluation Media and Technology
Produced by Twin Cities Public Television, St. Paul, MN, DragonflyTV (DFTV) is a weekly television series of half-hour live action shows for 8-12 year olds, distributed by PBS Plus. DFTV features real children engaged in real inquiry-based investigations in and around science centers across America. Six 2009 episodes of DFTV focus on the world of nanoscale science and technology. DFTV Nano highlights science centers and university research labs while applying the DFTV “Real Kids … Real Science” model to communicate basic concepts and the scientific process in nanoscience. The themes of the
DATE:
TEAM MEMBERS: Barbara Flagg
resource evaluation Public Programs
In Spring 2006, the Missouri Botanical Garden received a National Science Foundation grant to fund the LIONS program. LIONS trained educators from the St. Louis region, through professional development about place-based education, to deliver after school and summer programming to students grades 5 through 8. Since its inception, the LIONS program has included evaluation of program implementation and outcomes. There were dramatic changes in the scope of the program, which expanded beyond the originally targeted University City school district by adding additional schools recruited by LIONS
DATE:
TEAM MEMBERS: Rachel Becker-Klein David Chase
resource evaluation Media and Technology
Hidden Universe is a multi-faceted project built around production of a 2D/3D giant screen film. The goal is to inspire, engage, and excite viewers about the mysterious worlds hidden around us and the science and technology that reveal them. The film will illuminate natural wonders that are invisible to the naked eye, such as objects and processes that are too slow, too fast, and too small to be seen without advanced technologies. It will include nanoscience and microbiology research and developing wavelength technologies such as ultrafast lasers. The project will employ cutting-edge
DATE:
TEAM MEMBERS: Valerie Knight-Williams Divan Williams Rachael Teel Dobrowolski Gabriel Simmons Sauleh Rahbari
resource project Media and Technology
Space Science Institute (SSI) is conducting an International Polar Year project in partnership with the Marine Advanced Technology Center (NSF-funded MATE, Monterey, CA) and the Challenger Learning Center of Colorado (CLCC) to produce and disseminate an online simulation of scientific explorations by the latest generation of Antarctic underwater remotely operated vehicles (ROV). The explorations are based on the ROV work of Dr. Stacey Kim of the Moss Landing Marine Laboratories and of Dr. Robert Pappalardo and Dr. Arthur Lane at the Jet Propulsion Lab. Products include the simulation, supporting materials and guides, a web site, and a CD Master. Targeted audiences include: (a) middle-school to college-aged students who participate in national annual underwater ROV competitions, (b) Challenger Learning Centers in Colorado and around the country, and (c) the "science attentive" public who will access the simulation via links to SSI and other web sites. Simulations will follow a game structure and feature Antarctic polar science. Estimated annual usage levels are: for MATE, 2000; for Challenger Centers, 300,000; for the general public, 100,000. The project is positioned to continue well beyond the official end of the International Polar Year
DATE: -
TEAM MEMBERS: Brad McLain James Harold
resource project Public Programs
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE: -
TEAM MEMBERS: Loren Thompson Jeremy Babendure Ben Wiehe
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource project Media and Technology
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
DATE: -
TEAM MEMBERS: Rutgers University Carrie Ferraro
resource project Public Programs
WaterBotics is the underwater robotics curriculum and program that is being disseminated to four regions through a National Science Foundation grant, in collaboration with national and state partners. Its goal is to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. The curriculum, which can be used either in traditional classroom settings or in after-school and summer-camp situations, is problem-based, requiring teams of students to work together to design, build, test, and redesign underwater robots, or “bots” made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges.
DATE: -
TEAM MEMBERS: Stevens Institute of Technology Mercedes McKay Patricia Holahan
resource project Public Programs
"Have You Spotted Me? Learning Lessons by Looking for Ladybugs" is an innovative citizen science project that targets children from Native American, rural, farming, and disadvantaged communities. While most citizen science efforts target teens and adults, this project enables youth ages 5-11 to contribute to the development of a major ladybug database. Adult mentors in youth programs introduce children to topics such as ladybugs, invasive species, biodiversity, and conservation. Youth not affiliated with a program may participate independently. Project deliverables include a self-contained education program, an Internet portal and project website, a dedicated corps of volunteers, and the largest, accessible biological database ever developed. The database is made more reliable by utilizing records accompanied by an identifiable data image as a certified data point. Partners include the NY State 4-H, South Dakota State 4-H, Migrant Worker Children's Education Program, Cayuga Nature Center, Seneca Nation Department of Education Summer Programs, Seneca Nation Early Childhood Learner Centers After School Program, and the Onondaga Nation After School Program. Strategic impact will be realized through the creation of a citizen science project that provides hands-on interactions, field experiences, and accessible data that creates unique learning opportunities for youth. It is estimated that nearly 10,000 youth will be impacted by this work.
DATE: -
TEAM MEMBERS: John Losey Leslie Allee Louis Hesler Michael Catangui John Pickering
resource project Public Programs
Backyard Mystery is an NSF-funded curriculum, focused on diseases, pathogens and careers, using interactive paper and physical activities. Content is for middle school participants in afterschool settings, like 4-H and other similar venues. The curriculum engages student interest in genetics and genomics and in the bioSTEM workforce. The curriculum storyline is placed in a familiar setting to students--the backyard--and explores fungi, bacteria, viruses and parasites in a way that is engaging fun and informative. It can be tailored to specific audiences, e.g. participants interested in animal science will gain from focusing on the parasite panel. The curriculum is available in two forms: a combined lesson that brings all of the elements together in one session and another in which the content is broken out into three separate lessons. We would like to share this curriculum with facilitators and educators for both out-of-school time and classroom settings. It is available electronically and free to use. We only ask for users to complete a brief survey to give us feedback, which is helpful for NSF.
DATE: -
TEAM MEMBERS: Barbara Alonso Peggy G. Lemaux