This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.
The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
Clark Planetarium will partner with the Salt Lake County Library System to extend STEM education for adolescent audiences throughout the regional community. The planetarium will create STEM classes in up to 18 different county libraries, with up to four library activity sessions each week. With each activity session, the project will engage middle school and high school aged participants in hands-on science, technology, and engineering activities that explore complex concepts and principles through simulations of robotic missions. Each visit will engage learners in STEM-focused activities that emphasize group work such as building robots, collecting and analyzing data, and solving problems. Over the span of three years, the project will reach over 7,700 teens. The Utah Education Policy Center will use observation, program records, and a brief online survey to measure the program's impact on STEM interest and improvement in confidence, attitudes, and behavioral intentions around STEM.
This study explored the effect of depth of learning (as measured in hours) on creativity, curiosity, persistence and self-efficacy. We engaged ~900 parents and 900 students across 21 sites in Washington, Chicago, Los Angeles, New York, Alabama, Virginia and the United Arab Emirates, in 5-week (10-hr) Curiosity Machine programs. Iridescent trained partners to implement the programs. Thus, this analysis was also trying to establish a baseline to measure any loss in impact from scaling our programs and moving to a “train-the-trainer” model. We analyzed 769 surveys out of which 126 were paired. On
This report introduces a framework to support learning in library and museum makerspaces. The framework demonstrates how we can create the conditions for ambitious learning experiences to unfold within the making experience.
DATE:
TEAM MEMBERS:
Children's Museum of PittsburghInstitute of Museum and Library ServicesPeter Wardrip
Maker Corps is a program delivered by the Maker Education Initiative (Maker Ed) to increase organizational capacity to develop and deliver maker programing. Since its inception in 2013, the program has grown to support over 100 organizations by providing professional development, connections to a community of other maker educators and individualized support. Over time the program elements have changed in response to feedback from participants, collaboration with evaluators and shifts in focus for Maker Ed’s goals. In the spirit of maker education – tinkering, observing, responding, iterating –
This guide offers an introduction to collaborations between museums and youth-serving community organizations. While this guide is designed specifically for museums and community organizations, much of the content contained in this document can be applied to all kinds and levels of partnerships. This guide includes an overview of why to collaborate, levels of partnerships, how to start a partnership, and a variety of resources to sustain and deepen your collaborative relationships. Sprinkled throughout this document is advice from experienced collaborators as well as examples of different ways
Georgetown County Library will improve the digital-age critical workforce skills of local young people through STEM-related digital activities. Classes relating to online STEM resources, digital video production, and app development will result in increased skills and interpersonal abilities, as well as an appreciation for the public library as a dynamic and informative place. By working with a number of community organizations, the library seeks to reach a local youth community that has historically experienced high rates of poverty and low rates of high school completion, and build on previous efforts to provide job fairs, skills training, and other initiatives.
The University of Oklahoma will increase knowledge about how youths create information and how information professionals can help them become successful information creators by promoting their information and digital literacies and other 21st century skills. This Early Career research project builds on existing research and results of previously funded IMLS Learning Labs by investigating how twenty-four middle school students engaged in project-based, guided-inquiry STEM learning to create information in a school library Learning Lab/Makerspace. The project will result in a model of information-creating behavior that can help develop a groundbreaking approach to information literacy instructions and creative programs.
The STAR Library Education Network: a hands-on learning program for libraries and their communities, (STAR_Net for short) is led by the National Center for Interactive Learning (NCIL) at the Space Science Institute (PI: Paul Dusenbery). STAR stands for Science-Technology, Activities and Resources. Team members include NCIL staff, the American Library Association (ALA), Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP). STAR_Net is developing two comprehensive, informal education programs: Discover Earth and Discover Tech. The project also includes a comprehensive evaluation plan and a research component that explores how public libraries can serve as a STEM learning center in rural, underserved communities. STAR_Net is supported through a grant from the National Science Foundation. The STAR_Net project includes two traveling library exhibits: Discover Earth: A Century of Change and Discover Tech: Engineers Make a World of Difference. The Discover Earth exhibition features interactive, multimedia displays that allow exhibit visitors to interact with digital information in a dynamic way, encouraging new perspectives on our planet. Discover Tech introduces the many extraordinary ways that engineers solve problems to help people and societies around the world. Similar to a science center experience, visitors and families will be able to explore and tinker with their own engineering solutions. A number of STEM activities and resources will be developed by project staff and by other organizations to help librarians and community partners offer a wide variety of programs for their patrons. Besides the traveling exhibits and programs, STAR_Net also includes library staff training (online and in-person) and a Community of Practice (CoP) for librarians (including non-host librarians) to interact and partner with STEM professionals and organizations. NCI's Kate Haley Goldman and staff from Evaluation and Research Associates are conducting the project's evaluation.
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. STAR Library Education Network (STAR_Net) is a national program led by the Space Science Institute’s National Center for Interactive Learning (NCIL). STAR stands for Science-Technology Activities and Resources (www.starnetlibraries.org). Core partners include the American Library Association, Lunar and Planetary Institute, and the National Girls Collaborative Project. Other partners include the National Academy of Engineering, Engineers Without Borders-USA, IEEE-USA, the National Renewable Energy Lab, American Geophysical
DATE:
TEAM MEMBERS:
SPACE SCIENCE INSTITUTE/National Center for Interactive LearningPaul Dusenbery
This paper provides a brief overview of the ideas and principles underlying the connected learning movement, highlighting examples of how libraries are boosting 21st-century learning and promoting community development by partnering with a range of organisations and individuals to incorporate connected opportunities into their programmes. The connected learning movement supports interest-driven, peer-supported, and academically oriented learning for youth by promoting the core values of equity, participation, and social connection. By connecting formal and informal learning organisations with