From 2013-2016, Pacific Science Center, implemented the Exploring Earth Systems Sciences (EESS) project with the purpose of developing and delivering scripted demonstrations utilizing the Science On a Sphere (SOS) technology in order to promote understanding of and increase interest in Earth systems sciences. Specifically, the grant allowed the Science Interpretation team to research and write 20-minute presentations, targeted towards visitors aged 11 and older, about nine unique topics such as: climate change, weather, seasons, or the Polar Regions. Staff were then provided training in
Part I - At the same time communities all over the US are struggling to deal with climate change, resilience, and environmental justice, the nation faces a shortage of geoscientists who can work on these issues. This shortage is especially acute for marginalized and underserved communities. Gaps in the pathways to careers in geoscience begin as early as middle school?the last time many students encounter Earth science content in the classroom. To address these challenges, this project will create opportunities for students in three diverse communities (Atlanta, GA; San Bernardino, CA; and Oklahoma) to develop their scientific skills and knowledge while working on authentic, local problems as they progress from middle school to college and beyond, into the workforce. Part II - The project design is informed by research findings that students are more engaged and invested in learning science when it is connected to issues of concern to their local community and that use of authentic, mentored, real world research experiences increase retention and persistence. Bringing together partners who have led relevant, successful national efforts with partners in the three regions the project team will design and begin implementation of inclusive pathways that lead from an early interest in Earth to careers that require geoscience skills and knowledge. Each pathway will include multiple opportunities for students to 1) learn geoscience in the context of compelling local issues, 2) use geoscience to address local challenges, and 3) explore geoscience career pathways. Experience gained by initial program partners and regional pilots will be used to create national support structures for developing integrated geoscience pathways and a collective action framework for expanded partnerships.
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.
*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE:
-
TEAM MEMBERS:
Kristin RuppelClifford MontagneLisa Lone Fight
Finding inclusive approaches to broaden the participation of underrepresented communities in the sciences is the focus of this project. The team will create pathways for Native American students from the development of new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. Each partner brings a successful program, based on good practices from the research literature in improving outcomes for underrepresented students and scientists. Together, the researchers will create scientific collaborations that support a pipeline for Native American students from middle school through to graduate school and beyond. In addition, the project will work on building welcoming workplace climates for indigenous researchers within ?traditional Western? organizations. The approach will integrate indigenous and Western knowledge in research collaborations to create more creative, innovative, and culturally relevant science research programs.
This project, Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences, uses the principles of collective impact to create new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. The project collaborators will more strongly integrate indigenous and Western knowledge into collectively-developed research projects. The project partners the Rising Voices: Collaborative Science for Climate Solutions (Rising Voices) and member tribal colleges and communities with Haskell Indian Nations University, the National Center for Atmospheric Research (NCAR), the University of Arizona?s Biosphere 2, and National Center for Atmospheric Research?s Significant Opportunities in Atmospheric Research and Science (SOARS) internship and Global Learning and Observation to Benefit the Environment (GLOBE) citizen science programs. Together, they will build research partnerships between Native American and traditional Western scientists, provide professional development for NCAR and Biosphere 2 scientists on how to engage appropriately with tribal communities, and provide pathways for NA students from middle school through college, to grad school and beyond. The project will connect community-based citizen science programs for middle- and high school youth with undergraduate programs at Haskell Indian Nations University and University of Arizona, and with summer research internship experiences for undergraduates and graduate students that address topics of interest across tribal communities, tribal college faculty, traditional science institutions, and community-based citizen science. This project also enhances the research capacity of all partners, and brings together diverse perspectives, which have been shown to lead to greater innovation, creativity, and higher impact research. The project has the potential to provide a tried and tested model for building similar partnerships at other institutions, including content and methods for professional development for mainstream scientists, ways to create more welcoming spaces for Native American students and scientists, promising practices for improving how research in the geosciences carried out, and an increase in the representation of Native American students and scientists in that vital research enterprise.
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. In this project, the primary goal of Geo-literacy Education in Micronesia is to demonstrate the potential for effective intergenerational, informal learning and development of geo-literacy through an Informal STEM Learning Team (ISLT) model for Pacific island communities. This will be accomplished by means of a suite of six informal learning modules that blend local/Indigenous approaches, Western STEM knowledge systems, and active learning. This project will be implemented across 12 select communities in the Republic of Palau, the Federated States of Micronesia - which consists of the four States of Chuuk, Kosrae, Pohnpei, and Yap - and the Republic of the Marshall Islands. Jointly, these entities are referred to as the Freely Associated States (FAS). Geo-literacy refers to combining both local knowledge and Western STEM into a synthesized understanding of the world as a set of interconnected, dynamic physical, biological, and social systems, and using this integrated knowledge to make informed decisions. Applications include natural resource management, conservation, and disaster risk reduction. The project will: (1) demonstrate that the recruitment and development of an ISLT model is an effective method of engaging communities in geo-literacy activities; (2) increase geo-literacy knowledge and advocacy skills of ISLT participants; (3) produce and disseminate geo-literacy educational materials and resources (e.g., place-based teaching guides, geospatial data systems, educational apps, 2-D and 3-D models, and digital maps); and (4) provide evidence that FAS residents use these geo-literacy educational materials and resources to positively influence decision-making.
DATE:
-
TEAM MEMBERS:
Corrin BarrosKoh Ming WeiDanko TabrosiEmerson Odango
Roots of Wisdom (also known as Generations of Knowledge; NSF-DRL #1010559) is a project funded by the National Science Foundation that aims to engage Native and non-Native youth (ages 11-14) and their families in Traditional Ecological Knowledge (TEK) and western science within culturally relevant contexts that present both worldviews as valuable, complementary ways of knowing, understanding, and caring for the natural world. The Oregon Museum of Science and Industry (OMSI) and its partner organizations, The Indigenous Education Institute (IEI), The National Museum of the American Indian (NMAI
Roots of Wisdom (also known as Generations of Knowledge) is a 5-year project funded by the National Science Foundation (NSF-DRL #1010559) in support of a cross-cultural reciprocal collaboration to develop a traveling exhibit, banner exhibit, and education resources that bring together Traditional Ecological Knowledge (TEK) and western science. The summative evaluation for public audience impacts was conducted by the Lifelong Learning Group (COSI, Columbus, OH), in collaboration with Native Pathways (Laguna, NM).
Nurture Nature Center recently completed a 2 year project to develop a 6 Degrees of Connection educational program, supported by a grant from NASA’s CP4SMP. The program focuses on earth science concepts and the cross-cutting theme of interconnectedness, using personal relevance as a hook to capture students’ interest and motivate them to pursue STEM experiences and careers.
Over the course of two years, students, interns, and teachers were engaged to help develop a SOS program with an associated arts-based creative activity. An iterative program design process based on student and teacher evaluations resulted in the 6 Degrees of Connectionprogram which discusses earth systems connections involving the sun, space weather, and ozone; transportation, atmosphere and acid rain; climate change; and marine debris. The program is purposefully interactive and multi-disciplinary - students are encouraged to consider the cascading effects related to the production and transportation of their clothing during an interactive activity using the SOS, an arts-based activity after the SOS program helps participants visualize and physically diagram their connections to global issues, and students learn about STEM careers from clips of STEM professionals discussing the ways their work is tied to various human and earth systems.
We are pleased to share more about the project, the evaluation, and program materials on our website here http://nurturenaturecenter.org/6-degrees-of-connection-understanding-the-interconnectedness-of-earth-systems/.
Whereas the evolution of snow cover across forested mountain watersheds is difficult to predict or model accurately, the presence or absence of snow cover is easily observable and these observations contribute to improved snow models. We engaged citizen scientists to collect observations of the timing of distributed snow disappearance over three snow seasons across the Pacific Northwest, U.S.A. . The primary goal of the project was to build a more spatially robust dataset documenting the influence of forest cover on the timing of snow disappearance, and public outreach was a secondary goal
DATE:
TEAM MEMBERS:
Susan Dickerson-LangeKarla EitelLeslie DorseyTimothy LinkJessica Lundquist
A hybrid combination of art and science is used to communicate science in a primary school setting. The purpose of the work is to enhance student awareness of the science behind understanding the global climate system with a focus on the cryosphere. An experiment in communicating science is conducted by taking the collaborative experiences of a professional artist and scientist, which are then combined and projected onto an ostensibly everyday primary school classroom project. The tangible end result is a stand-alone contemporary art work that then is the focal point of community-based
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project developed FieldScope, a GIS-based platform that enables organizations to engage students and members of the public in educational citizen science projects.
The idea to link European citizenship and science education is surely new and uncommon in Poland, but we think, as SEDEC project, that can enrich both the panorama of science popularization outside and inside school system. I checked carefully curricula for every stage of school education looking for the topics concerning the developing of the European citizenship. I found that they are usually connected to the history, geography and some activities developing of the knowledge about generally defined citizenship. The spare topics connected directly to the science are present especially in