In this paper, we describe our approach to designing electronic puppet-building workshops for middle to early high school students. Power Puppet uses traditional puppet building materials - paper and cloth as the main resources, together with simple circuits elements such as LED’s, batteries and magnets. We document our process of designing puppet-building workshops that include STEM education criteria. We collaborated with the Center for Puppetry Arts to design these workshops in such a way that part of the making will include basic electronic input and output components. We aim to open this
The University of Oklahoma will increase knowledge about how youths create information and how information professionals can help them become successful information creators by promoting their information and digital literacies and other 21st century skills. This Early Career research project builds on existing research and results of previously funded IMLS Learning Labs by investigating how twenty-four middle school students engaged in project-based, guided-inquiry STEM learning to create information in a school library Learning Lab/Makerspace. The project will result in a model of information-creating behavior that can help develop a groundbreaking approach to information literacy instructions and creative programs.
The Museo de Arte de Puerto Rico will develop and implement "Art and Technology," which will provide learning opportunities to at-risk youth in the San Juan metropolitan area by integrating the museum's exhibits and collections as a platform for learning activities and dynamic thinking. Through lessons on digital media, photography, and art aligning with academic standards, students will acquire technology and problem-solving skills, language proficiency and communication skills, the ability to better interact with peers, and enhanced information skills. At-risk youth will be able to use the museum as an innovative learning facility with free art and technological resources to develop their skills to learn, create, and share with their peers their work in a safe environment.
Sam Noble Oklahoma Museum of Natural History will develop traveling natural history science curricula kits for K-12 students. This project will expand the museum's outreach program, featuring STEM (Science, Technology, Engineering, and Mathematics) content with a focus on Oklahoma geology, life, and cultural science. The museum will share the educational kits, featuring materials aligning with state educational standards, with teachers across Oklahoma. The museum's digitization of the kits will increase the capacity and number of teachers who have access to the material and enable students to experience high-quality STEM educational opportunities offsite and online.
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. In this Cyberlearning EAGER project, the project team is developing foundations for using "paper mechatronics" as a learning technology. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry. In this approach, learners will design foldable paper components and assemblies; program motors, sensors and controls; test their ideas iteratively; and share their designs on a website. This paper-based modeling approach to learning concepts in and practices of mechanical engineering, electrical engineering, control systems, and computer programming ultimately aims to make it possible for all learners to have exposure to and the opportunity to participate in creative engineering, design, and computer programming.
The approach to learning through designing and making through paper mechatronics is made possible by a convergence of many different technological factors -- the array of small computers, sensors, and actuators that are becoming available at low cost and a size that children can use; availability of a wide variety of manipulable conductive materials (threads, paints, fabrics); low-cost and precise desktop and laser cutters for paper and similar materials; a wide variety of novel paper-like materials; and new ways of interacting with the computer. The approach has its foundations in Papert's constructionism and in the current maker movement, but it has potential beyond constructionism itself, both in practice and with respect to what can potentially be learned about learning and development in in context of its use.
The Museum of Science and Industry (MOSI), in collaboration with the Tampa Community Development Corporation (CDC), will create a youth STEAM (science, technology, engineering, arts, and mathematics) program designed by East Tampa neighborhood participants for the neighborhood. The STEAM program will be a first of its kind in the area and will bring a continuum of experiences in STEAM fields to underserved middle and high school students, as well as volunteer participants, who come from the East Tampa neighborhood. Initial programming topics for career exploration include astronomy/cosmology and space exploration, environmental sciences, engineering, robotics, crime scene forensics, and medical explorations. The project will expand the museum's ability to create a STEAM continuum, increase interest in STEAM careers, and to increase awareness of skills necessary to be successful in STEAM careers.
The Clay Center for Arts and Sciences of West Virginia will create professional learning communities of teachers and after-school staff serving 7th grade students at seven partner schools using digital storytelling as a tool to explore energy-related topics impacting their communities. West Virginia's role as a leading coal producer and the impact of natural gas drilling served as strong influencing factors in the creation of this STEAM project, titled emPOWERed Stories. Students will create an exhibit that incorporates these digital stories. The results will inform the broader field on ways to better blend formal and informal education experiences to become more potent learning environments.
DATE:
-
TEAM MEMBERS:
William Jeffries
resourceprojectProfessional Development, Conferences, and Networks
The National Writing Project (NWP) is collaborating with the Association of Science-Technology Centers (ASTC) on a four-year, full-scale development project that is designed to integrate science and literacy. Partnerships will be formed between NWP sites and ASTC member science centers and museums to develop, test, and refine innovative programs for educators and youth, resulting in the creation of a unique learning network. The project highlights the critical need for the integration of science and literacy and builds on recommendations in the Common Core State Standards and the National Research Council's publication, "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The content focus includes current topics in science and technology such as environmental science, sustainability, synthetic biology, geoengineering, and other subjects which align with science center research and exhibits. The project design is supported by a framework that incorporates a constructivist/inquiry-based approach that capitalizes on the synergy between rigorous science learning and robust literacy practices. Project deliverables include a set of 10 local partnership sites, professional development for network members, a project website, and an evaluation report highlighting lessons learned. Partnership sites will be selected based on interest, proximity, history, and expertise. Two geographically and demographically diverse cohorts, consisting of five partnerships each will be identified in Years 2 and 3. Each set of partners will be charged with creating a comprehensive two-year plan for science literacy activities and products to be implemented at local sites. It is anticipated that the pilot programs may result in the creation of new programs that merge science and writing, integrate writing into existing museum science programs, or integrate science activities into existing NWP programs. Interest-driven youth projects such as citizen science and science journalism activities are examples of programmatic approaches that may be adopted. The partners will convene periodically for planning and professional development focused on the integration of science and literacy for public and professional audiences, provided in part by national practitioners and research experts. A network Design Team that includes leadership representatives from NWP, ASTC, and the project evaluator, Inverness Research, Inc., will oversee project efforts in conjunction with a national advisory board, while a Partnership Coordinator will provide support for the local sites. Inverness Research will conduct a multi-level evaluation to address the following questions: -What is the nature and quality of the local partner arrangements, and the larger network as a whole? -What is the nature and quality of the local science literacy programs that local partners initiate, and how do they engage local participants, and develop their sense of inquiry and communication skills? First, a Designed-Based Implementation Research approach will be used for the developmental evaluation to assess the implementation process. Next, the documentation and portrayal phase will assess the benefits to youth, educators, institutions, and the field using surveys, interviews, observations of educators, and reviews of science communication efforts created by youth. Finally, the summative evaluation includes a comprehensive portfolio of evidence to document the audience impacts and an independent assessment of the project model by an Evaluation Review Board. This project will result in the creation of a robust learning community while contributing knowledge and lessons learned to the field about networks and innovative partnerships. It is anticipated that formal and informal educators will gain increased knowledge about science and literacy programs and develop skills to provide effective programs, while youth will demonstrate increased understanding of key science concepts and the ability to communicate science. Programs created by the local partnerships will serve approximately 650 educators (450 informal educators and 200 K-12 teachers) and 500 youth ages 9-18. Plans for dissemination, expansion, and sustainability will be undertaken by the sub-networks of the collaborating national organizations drawing on the 350 ASTC member institutions and nearly 200 NWP sites at colleges and universities.
The University of Alaska Fairbanks will partner with the National Optical and Astronomy Observatory, the University of Alaska Museum of the North, and the University of Washington-Bothell to bring biomaterials, optics, photonics, and nanotechnology content, art infused experiences, and career awareness to art-interested girls. This full scale development project, Project STEAM, will explore the intersections between biology, physics, and art using advanced technologies at the nano to macro scale levels. Middle school girls from predominately underrepresented Alaskan Native, Native American (Tohono O'odham, Pascula Yaqui) and Hispanic groups, their families, teachers, and Girl Scout Troop Leaders in two site locations- Anchorage, Alaska and Tucson, Arizona will participate in the project. Centered on the theme "Colors of Nature," Project STEAM will engage girls in science activities designed to enhance STEM learning and visual-spatial skills. Using advanced technologies, approximately 240 girls enrolled in the Summer Academy over the project duration will work with women scientist mentors, teachers, and Girl Scout Troop Leaders to create artistic representations of natural objects observed at the nano and macro scale levels. Forty girls will participate in the Summer Academy in year one (20 girls per site- Alaska and Arizona). In consequent years, approximately180 girls will participate in the Academy (30 girls per site). Another 1,500 girls are expected to be reached through their Girl Scout Troop Leaders (n=15) who will be trained to deliver a modified version of the program using specialized curriculum kits. In addition, over 6,000 girls and their families are expected to attend Project STEAM Science Cafe events held at local informal science education institutions at each site during the academic year. In conjunction with the programmatic activities, a research investigation will be conducted to study the impact of the program on girls' science identity. Participant discourse, pre and post assessments, and observed engagement with the scientific and artistic ideas and tools presented will be examined and analyzed. A mixed methods approach will also be employed for the formative and summative evaluations, which will be conducted by The Goldstream Group. Ultimately, the project endeavors to increase STEM learning and interest through art, build capacity through professional development, advance the research base on girls' science identity and inspire and interest girls in STEM careers.
This report summarizes the evaluation results from the NSF funded Eight-Legged Encounters family event that uses arachnids as a hook to draw public interests towards science. The event involves informative and hands-on activities that bridge the gap between academia and the public, extending knowledge about arachnids to children and their parents. The Bureau of Sociological Research (BOSR) at UNL was contracted to evaluate Eight-Legged Encounters. The data collection for this report involves five events and three audiences: adults, children, and the volunteers of the event. Two events were
DATE:
TEAM MEMBERS:
University of Nebraska LincolnEileen Hebets
Calabrese Barton and colleagues examine the beliefs and science practices of two students in a two-year study across settings. The study seeks to answer the question, “What do girls from non-dominant populations do to author themselves into or out of science, in spite of – or because of – their grades?” The study also examines how structures such as teacher support, community organizations, and school tracking systems promote or hinder opportunities for these students to author identities in science.
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the Fusion Science Theater (FST) model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics.