This conference proposal, organized by the National Center for Science and Civic Engagement, is convening professionals both in higher education and in informal science education, all of whom have done work or are seriously interested in the interface of science, society and civic engagement. The purpose of the conference is to build bridges between and explore new connections among these communities around their mutual interests in emerging educational practices that promote self-directed learning in STEM through connections with matters of civic consequence.
This project will develop a new 4-H Afterschool curriculum called Discovering Technology to be implemented in 7 states potentially reaching 5000 middle school youths and 250 4-H leaders annually. The program would encourage youth in both rural and urban settings to pursue careers in engineering and technology. The project is a partnership of the Pratt School of Engineering at Duke University, the National 4-H Council/4-H Afterschool, North Carolina 4-H and the National Science & Technology Education Partnership (NSTEP).
This project will develop a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the discoveries from this scientific discipline. The Space Science Institute will capitalize on its prior successes and the success of other education programs to develop a comprehensive and integrated program that has the following five components: (1) the Space Weather Center website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. Partners include UC Berkeley's Space Sciences Laboratory; the American Library Association; Macerich: a mall developer with nationwide impact; and the Math, Engineering, Science Achievement program. The project brings together a creative collaboration between exhibit designers, graphic artists, formal/informal educators, and research scientists. The project spans a full spectrum of science communication strategies (formal, informal, and public outreach). The evaluation part of the project will examine how well the project elements work together and a pilot research study will explore the efficacy of online digital games for communicating complex space weather content. Results will be published and the findings presented at professional meetings and online. The three-year project is expected to impact well over two million people, including exhibit and website visitors and outreach visitors at various venues such as libraries and malls.
H2O Chelsea is a community-based water research and surveillance program developed collaboratively by the Municipality of Chelsea, the University of Ottawa’s Institute of the Environment and Action Chelsea for the Respect of the Environment (ACRE). The goal of the program is to develop a better understanding of ground and surface water resources in Chelsea that will inform municipal planning and management decisions. The project is volunteer-driven, relying on the commitment of over 70 local residents, municipal employees and professors and students from the University of Ottawa.
DATE:
-
TEAM MEMBERS:
Municipality of ChelseaUniversity of OttawaAction Chelsea for the Respect of the Environment (ACRE)Isabelle Pitre
resourceprojectProfessional Development, Conferences, and Networks
The Department of Education of the National Museum of Natural History, Smithsonian Institution, with broad participatory support from free-standing, university-based and regional natural history museums across the nation will conduct a 3-day national conference on informal science learning in natural history settings. The goal of this conference will be to develop and disseminate a sustained, collaborative learning research agenda that begins to address the role of natural history museums in natural history learning and establish an infrastructure for communication and collaboration to pursue the research agenda. The conference builds on recent meetings among museums and informal learning professionals to this topic. Executive and Leadership Committees will implement a scaffolded project design involving a sweep of evaluation reports and audience research from the field, a foundational literature review, Committee workshops to review the field, conference planning and call for participation, and pre-conference dialogue through professional organizations and activities. The conference, to be held in Washington, DC in Spring-Summer 2012, will be followed by broad post-conference dissemination of findings and a call to action around the conference-generated research agenda. The conference will be evaluated by Oberg Research, an external audience research and evaluation firm. Oberg will develop an evaluation process that measures the quality, relevance, and impact of pre-conference, conference, and post-conference activities using an ethnographic fieldwork methodology involving in-depth interviews and participant observation of conference activities. The intended outcomes and impacts of this national conference are to develop, initiate, and disseminate a collaborative and sustained learning research agenda about how the 800 natural history museums in the United States can best use their resources for STEM learning. Among the topics to be considered by the Conference are new models for interaction among educators, curators, collection managers, exhibit professionals and museum leadership; audience research to more fully understand audiences and their needs; new technologies for discovery and learning regarding rapid response and current science; public participation in scientific research (citizen science); and collaboration in learning research across the Natural History field.
The overall goal of the current proposal is to adapt the interdisciplinary research-based curriculum created at the School for Science and Math at Vanderbilt (SSMV) for implementation of a four-year program in three Metropolitan Nashville Public School (MNPS) high schools. The specific aims of the proposal are to adapt the on-campus (at Vanderbilt) model for implementation in three public high schools with different academic profiles (SSM Academies); to define the variables and features required to sustain the program and to replicate the model in any high school setting; and to define a strategy for disseminating the model to additional schools. Students entering 9th grade in a school in which an SSM Academy has been implemented will be encouraged to apply. Those who are accepted into the program will spend three hours every other day in two courses based on the adapted curriculum. As with the SSMV, rising seniors will have opportunities to enter Vanderbilt laboratories for summer research internships. Teachers from the high school will work with Center for Science Outreach scientists to adapt the SSMV curriculum for implementation. Ongoing, year-long teacher professional development will be conducted to ensure that the curriculum is dynamic and the teachers are well-prepared to engage and guide the students in the curriculum. The anticipated outcomes include enhanced student achievement as measured by GPA, and scores on ACT science reasoning and end of course tests; increased SSM student interest in careers in science; increased district-wide enrollment in SSM programs; increased graduation rates and postsecondary education enrollment by SSM students; development of unique curricular science units that can be adapted for a novel four-year interdisciplinary research- based curriculum; development of a sustainable model built on effective features of each SSM that can be exported to other high schools within and outside Nashville; enhanced community and family involvement in the SSM programs and school community in general; a strengthened partnership between Vanderbilt and MNPS that will serve as a national model of a successful university-K-12 collaboration to enhance science teaching and learning.
Through "Addressing the Science of Really Gross Things: Engaging Young Learners in Biomedical Science Through a Fulldome Planetarium Show and Supporting Curricula," Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill, in close collaboration with NIH-funded researchers at the UNC and a leading children's book author, will develop an informal science education media project and a suite of hands-on, inquiry-based curricula based on the media project for use in science centers, museums and schools. This project will build the pipeline of future researchers and create awareness of NIH-funded research by generating interest and excitement among children age 9-13 in the health sciences and related careers and building their science content knowledge. To achieve the objective, the investigators will develop a fulldome planetarium show; create correlating curricula for summer camps, afterschool programs, scout programs, science center field trips, science clubs and schools; and produce a DVD highlighting careers in the health sciences. In addition, the project will use several methods to target populations traditionally underrepresented in the biomedical fields, including featuring professionals from underrepresented populations in the multimedia and curricula products, making outreach visits to counties with large populations traditionally underrepresented in health science research careers, and producing a Spanish-language version of the products. The use of a known brand, "Grossology," is an innovative way to connect to children in the target age range and to encourage the informal science education community to embrace health-science content in their fulldome theaters. In addition, the project's hub-and-spoke approach further encourages adoption of this programming by providing informal science venues with both an engaging experience (hub) and the supporting curricula (the spokes) that is necessary to extend the show's potential for having significant educational impact. A strong project team maximizes the project's likelihood for success. The team includes fulldome producers and educators from Morehead and NIH-funded researchers with expertise in appropriate science content areas. In addition, the investigators have created a network of consultants, advisory board members and evaluators that will create feedback loops designed to ensure high-quality, scientifically-accurate, educationally-effective products. The investigators will use a combination of free and revenue-based dissemination strategies to ensure that the products of this award are broadly distributed. These strategies hold significant promise for creating broad use of this project's products in the nation's science centers, museums and classrooms.
Having developed the concept of near-peer mentorship at the middle school/high school level and utilized it in a summer science education enhancement program now called Gains in the Education of Mathematics and Science or GEMS at the Walter Reed Army Institute of Research (WRAIR), it is now our goal to ultimately expand this program into an extensive, research institute-based source of young, specially selected, near-peer mentors armed with kits, tools, teacher-student developed curricula, enthusiasm, time and talent for science teaching in the urban District of Columbia Public Schools (specific schools) and several more rural disadvantaged schools (Frederick and Howard Counties) in science teaching. We describe this program as a new in-school component, involving science clubs and lunch programs, patterned after our valuable summer science training modules and mentorship program. Our in-house program is at its maximum capacity at the Institute. Near-peer mentors will work in WRAIR's individual laboratories while perfecting/adapting hands-on activities for the new GEMS-X program to be carried out at McKinley Technology HS, Marian Koshland Museum, Roots Charter School and Lincoln Junior HS in DC, West Frederick Middle School, Frederick, MD and Folly Quarter Middle School and Glenelg HS, in Howard County, MD. Based on local demographics in these urban/rural areas, minority and disadvantaged youth, men and women, may choose science, mathematics, engineering and technology (SMET) careers with increasing frequency after participating, at such an early age, in specific learning in the quantitative disciplines. Many of these students take challenging courses within their schools, vastly improve their standardized test scores, take on internship opportunities, are provided recommendations from scientists and medical staff and ultimately are able to enter health professions that were previously unattainable. Relevance to Public Health: The Gains in the Education of Mathematis and Science (GEMS) program educates a diverse student population to benefit their science education and ultimately may improve the likelihood of successfully entry into a health or health-related professions for participating individuals. Medical education has been show to improve public health.
This project will introduce students ages 8-14, including underserved students; their teachers and families; and the general public to three biomedical research areas inspired by NIH's Roadmap for Medical Research: biological pathways, bioinformatics and nanomedicine. These areas are unfamiliar to many adults and are not introduced in science curricula. Using the metaphor of a hardware store (i.e., building materials, tools, parts, home repair projects), the project will introduce families, students and teachers to three ideas: (1) The body maintains and repairs itself at the molecular, cell, tissue, organ and system levels; (2) Biomedical researchers are uncovering new complexities at the molecular level that can increase our understanding of how the body works; and (3) Developments in nanomedicine can lead to discoveries and treatments. In a hardware store theater and workshop space and in a virtual hardware store, the project will develop and present demonstrations and basic- and intermediate-level labs (for 2nd- and 6th-grade students or families); train museum staff and interns to present the programs; offer orientation workshops to teachers from Title I schools; develop a teacher's guide; conduct outreach in middle schools; engage scientists to talk about their work and help them communicate with the public; and create a manual of materials and activities for other science centers. The evaluation plan will include formative research on activities and assessment of how well repair metaphors facilitate understanding of clinical issues. A team of scientists, museum staff, science teachers, and biology and medical students will guide the development of education components.
This cooperative effort among Purdue University, public schools in Indiana, and The Children's Museum of Indianapolis aims to develop, evaluate and disseminate educational programs for K-12 students, parents, teachers and the public about the science involved in keeping people healthy. Obesity prevention, cancer prevention and asthma will be emphasized. Fitness programs, research programs using animal models, K-12 outreach programs, professional development workshops and recruiting efforts will be networked to fill gaps in health science education, interest schoolchildren in health science research and improve public health. This project will develop and rigorously assess curricular modules for grades three, six and nine. The science behind health advances, the clinical trials process and the role of animals in developing drugs and medical devices will be addressed. In addition, the project will engage schoolchildren in becoming health science researchers by providing them with role models. Researchers will interact with K-12 students during classroom visits, camps and after-school programs. Finally, the project will involve and engage children, parents and the public in educational fitness activities and programs. Dogs will be incorporated into fitness programs as exercise companions. The program includes an interactive traveling exhibit, highlighting the science involved in keeping people healthy.
DATE:
-
TEAM MEMBERS:
Timothy RatliffSandra Amass
resourceprojectProfessional Development, Conferences, and Networks
The New York Hall of Science (NYHOS), in partnership with the University of Michigan (UM), the Miami Museum of Science (MMOS), the National Evolutionary Synthesis Center (NESCent), and a broad group of Science and Museum Advisors, requests $1,349,349 over five years for a combined Phase I and Phase II NIH SEPA grant to develop, test and travel a new hands-on science exhibition on the subjects of natural selection and human health. With the working title "Evolution and Health," the 1000-square-foot interactive traveling exhibition will engage middle and high-school students, educators and the general public in inquiry-based learning on the role of evolution and natural selection in explanations of health, illness, prevention, and treatment. In addition, teacher development programs and online activities focusing on health issues seen from an evolutionary perspective will be developed by the NYHOS Education staff and disseminated along with the exhibition on its national tour. The project will address the relationship between health and natural selection; while there are many museum exhibitions on health, this will be only one of two to take an evolutionary perspective, and the only one to explore the relationship between health and natural selection. Ultimately, "Evolution and Health" will become a national model for conveying an evolutionary understanding of health, which will be increasingly central to research and public understanding in the coming years. "Evolution and Health" will increase visitors' comprehension of their own health issues by fostering a better understanding of evolution and natural selection. The project will seek to determine whether employing the perspective of natural selection can lead to a deeper understanding of human health.
There are a growing number of informal science education (ISE) programs in Native communities that engage youth in science education and that are grounded in Native ways of knowing. There is also a growing body of research focusing on the relationship between culture, traditional knowledge, and science education. However, there is little research documenting how these programs are being developed and the ways in which culture and Western science are incorporated into the activities. This study outlines effective practices for using Native ways of knowing to strengthen ISE programs. These
DATE:
TEAM MEMBERS:
Elizabeth MackHelen AugareLinda Different Cloud-JonesDavid DominiqueHelene Quiver GaddieRose HoneyAngayuqaq KawagleyMelissa Little Plume-WeatherwaxLisa Lone FightGene MeierPete TachiniJames Rattling LeafElvin Returns from ScoutBonnie Sachatello-SawyarHi'ilani ShibataShelly ValdezRachel Wippert