Skip to main content

Community Repository Search Results

resource project Media and Technology
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE: -
TEAM MEMBERS: Mitchel Resnick John Maeda Yasmin Kafai
resource research Professional Development, Conferences, and Networks
This is a recording of a NISE Network online brown-bag conversation held in December 2014 about the International Year of Light. In 2013, the United Nations proclaimed 2015 as the International Year of Light (IYL). More than 100 organizations from more than 85 countries are participating in IYL. During this conversation we discussed scientific organizations that would make great partners for IYL events, shared light-related activities and videos developed by the NISE Network, and talked about the science behind some of those activities.
DATE:
TEAM MEMBERS: Catherine McCarthy
resource research Professional Development, Conferences, and Networks
Presentation on NSF grant DRL-0337354 (""TexNET: Texas Network for Exhibit-based Learning and Teaching"") presented at the CAISE Convening on Organizational Networks, November 17th, 2011."") presented at the CAISE Convening on Organizational Networks, November 17th, 2011.
DATE:
resource project Media and Technology
The Global Viewport for Virtual Exploration of Deep-Sea Hydrothermal Vents is a Track 2 project using spherical display systems to educate the public about the global significance of vents in the world's oceans and in the dynamic processes of Earth as a whole. The project is a collaboration between the Woods Hole Oceanographic Institution and the Ocean Explorium at New Bedford Seaport, members of the Magic Planet Community and Science On a Sphere® (SOS) Network, respectively. The proximity of the two institutions enables a unique evaluation of the learning attained with a stand-alone spherical display vs. live presentations with an SOS. The new content for spherical display systems will address key principles of Earth Science Literacy and Ocean Literacy. Imagery and data from research cruises are being used to: show how hydrothermal vents link dynamic processes in the lithosphere, hydrosphere, and biosphere; promote stewardship of life in remote environments; and excite viewers about the deep ocean frontier including exploration, research, and resources. The Global Viewport project is geared towards informal science education but also includes a component for teacher professional development from schools in towns with populations underrepresented in STEM fields. An online portal for content on Google Earth enables virtual exploration of deep-sea vents from home, extending the learning experience beyond a single visit to an informal science education institution. The online content, including interactive learning modules and games, is being promoted to marine educators and scientists at national conferences and through the COSEE social network.
DATE: -
TEAM MEMBERS: Stace Beaulieu
resource evaluation Media and Technology
The Global Viewport project was an integrative collaboration between the Woods Hole Oceanographic Institution (WHOI) and. the New Bedford Oceanarium Corporation dba Ocean Explorium at New Bedford Seaport (hereafter, Ocean Explorium). The main thematic area that was addressed is Improving Public Earth System Science Literacy. A main objective of the Global Viewport project was to address Goal 1 of the GEO Education and Diversity Strategic Plan (2010-2015): “Advancing public literacy in Earth System Science.” For this evaluation the public interacted with spherical display content in an informal
DATE:
TEAM MEMBERS: Woods Hole Oceanographic Institution (WHOI) Meredith Emery
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington DC. It describes the CLUES project that provides STEM education opportunities to families.
DATE:
TEAM MEMBERS: New Jersey Academy for Aquatic Sciences Barbara Kelly
resource project Public Programs
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
DATE: -
resource project Media and Technology
This Science Learning+ Planning Project will develop a prototype assessment tool (based on a mobile technology platform) to map STEM learning experiences across different learning ecologies (e.g. science centers, mass media, home environment) and to develop research questions and designs for a Phase 2 Science Learning+ proposal. The tool will focus on the impact of the learning ecologies on knowledge, interest, identity and reasoning rather than emphasize learning in a specific content area. The proposing team will develop and conduct a small scale usability study during the planning period, which will inform what is proposed in the Phase 2 research. A key focus of the planning period will be to identify and develop the theoretical constructs (i.e., outcomes) to be measured by the prototype App. As a starting point, the project will start with four of the six strands identified in Learning Science in Informal Environments (National Research Council, Bell et al., 2009): (1) interest triggered by a STEM experience; (2) understanding scientific knowledge; (3) engaging in scientific reasoning; and (4) identifying with the scientific enterprise. Discussion among the project partners during the planning process will revolve around how these strands should be measured in the Phase 2 research across ecologies. The measurement tool will assess the goal(s) that people set as they engage in STEM learning within each ecology and will measure the individuals' duration and level of engagement. The project will strive to utilize measures that: (1) are nonobtrusive; (2) are embedded in STEM experiences; (3) can be used across ecologies; (4) can be scaled for other ecologies than the ones examined in Phase 2 research; and (5) will be easy to use by researchers and practitioners.
DATE: -
TEAM MEMBERS: Bradley Morris John Dunlosky Great Lakes Science Center University of Limerick IdeaStream (UK) Irish Independent newspaper
resource project Public Programs
Based on the number of visitors annually, zoos and aquariums are among the most popular venues for informal STEM learning in the United States and the United Kingdom. Most research into the impacts of informal STEM learning experiences at zoos and aquariums has focused on short-term changes in knowledge, attitudes and behaviors. This Science Learning+ project will identify the opportunities for and barriers to researching the long-term impacts of informal STEM learning experiences at zoos and aquariums. The project will address the following overarching research question: What are and how do we measure the long-term impacts of an informal STEM learning experience at a zoo and aquarium? While previous research has documented notable results, understanding the long-term impacts of zoo and aquarium learning experiences will provide a deeper and more nuanced understanding of the impact of these programs on STEM knowledge, skills and application. This study will use a participatory process to identify: (1) the range of potential long-term impacts of informal science learning experiences at zoos and aquariums; (2) particular activities that foster these impacts; and (3) opportunities for and barriers to measuring those impacts. First, an in-depth literature review will document previous research efforts to date within the zoo and aquarium community. Second, a series of consultative workshops (both in-person and online) will gather ideas and input from practitioners, researchers, and other stakeholders in zoo and aquarium education. The consultative workshops will focus on two questions in particular: (1) What are the different types and characteristics of informal science learning experiences that take place at zoos and aquariums? and (2) What are the long-term impacts zoos and aquariums are aiming to have on visitors in relation to knowledge, attitudes, skills and behaviors/actions? Finally, visitor surveys at zoos and aquariums in the US and UK will be conducted to gather input on what visitors believe are the long-term impacts of an informal STEM learning opportunity at a zoo or aquarium. The data gathered through all of these activities will inform the design of a five-year, mixed-methods study to investigate long-term impacts and associated indicators of an informal STEM learning experience at a zoo or aquarium. One of the aims of the five-year study will be to test instruments that could eventually be used by the global zoo and aquarium community to measure the long-term impacts of informal STEM learning programs. Designing tools to better understand the long-term impacts of informal STEM learning at zoos and aquariums will contribute to our ability to measure STEM learning outcomes. Additional benefits include improved science literacy and STEM skills amongst visitors over time and an understanding of how education programs contribute to wildlife conservation worldwide.
DATE: -
TEAM MEMBERS: Brian Johnson Stanford University Lancaster University Sarah Thomas Nicole Ardoin Murray Saunders
resource research Public Programs
This is a poster from the 2014 AISL PI Meeting in Washington, DC. It describes KC Empower, a project that explores after school science for children with disabilities.
DATE:
TEAM MEMBERS: Bob Hirshorn
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes My Sky Tonight, a project that introduces preschool-age children to astronomy.
DATE:
TEAM MEMBERS: Suzanne Gurton