Children have a wonderful curiosity about nature and the environment, which, if encouraged through afterschool activities can have a profound impact on their health and well-being. Children also take readily to concepts of conservation which will make them excellent stewards of the future of our environment. This issue brief explores the relationship between children's health, academic enrichment and community awareness through developing a relationship with the wonders of their natural environment.
An IMLS (Institute of Museum and Library Services) National Leadership project with University of California Museum of Paleontology (lead), Yale Peabody Museum of Natural History, Museum of the Earth and University of Kansas Natural History Museum to create a tree portal website with learning research, curriculum material and guides on how to effectively use and teach about the tree of life for teachers and museum professionals.
DATE:
-
TEAM MEMBERS:
University of California-BerkeleyTeresa MacDonaldRoy CaldwellAnna ThanukosLisa WhiteDavid HeiserRobert Ross
This report presents the findings of a qualitative study that asked 38 secondary science teachers, ‘How can natural history museums effectively support science teaching and learning?’ A partnership of four natural history museums across England, teachers from their local areas and a university education department were involved. The museums work in partnership to support school science at 11–18. In-depth focus groups held at the museums and questionnaires were used.
The Decapoda - shrimp, lobsters, and crabs - are an economically important, diverse group of animals whose geologic history extends back 400 million years. Living representatives, numbering over 15,000 species, are global in distribution and nearly ubiquitous in oceanic and non-oceanic environments. They exert a major impact on ecosystems; understanding the dynamics of their fossil record will illuminate their historical impact on ecosystems. We will test the hypothesis that decapods are arrayed in a series of discrete evolutionary faunas; remarkably, the vast array of living and fossil decapods in diverse interrelated groups have exploited four basic body plans repeatedly. Other hypotheses to be tested are that the Decapoda have repeatedly adopted a limited number of baupläne, or generalized architectures, throughout their history; that they have experienced explosive evolutionary radiations followed by periods of no determinable change; and that they are generally resistant to mass extinction events. These hypotheses will be tested using a unique dataset compiled and assessed by the Principle Investigators: a compilation of all fossil decapod species, arrayed in a classification scheme including fossil and living taxa, with geologic and geographic ranges of all species, including a phylogeny (i.e. "family tree") for many sub-groups within the Decapoda. The dataset will be expanded to include ecological data for each taxon and will be entered into the Paleobiology Database, an NSF-supported vehicle for analyzing the fossil record. Employing its methodology, patterns of diversity and macroevolution of the decapods will be generated at levels ranging from the entire Order to species level. This will result in a comprehensive analysis of macroevolutionary patterns of this major group for the first time. Available paleoecological data derived from field studies and published records will be used to determine the effects of various environmental factors such as seafloor conditions, reef development, water depth, and temperature on morphology, extinction survivorship, and diversity. Because decapods have a remarkable range of morphological variation preservable in the fossil record, the diversity of the groups of decapods can be assessed in relation to their morphological characteristics. Defining the history of taxa with specialized morphology will permit recognition of body plans that have been exploited by different decapod groups throughout the history of the clade.
Intellectual merit. This study will provide the most comprehensive analysis of macroevolution of the Decapoda yet conducted, all based upon a unique dataset that is internally consistent by virtue of its having been developed entirely by the investigators. It will document the significance of employing a high resolution, species-level database for interpretation of diversity. The hypotheses and conclusions derived here will provide a model and the foundation for future work on Decapoda, Arthropoda, and macroevolution of well-constrained groups. It will provide a test for the efficacy of PBDB data versus a constrained dataset assessed by specialist systematists.
Broader impacts. The work will introduce undergraduate students at Kent State at Stark, an undergraduate campus, and Kent State at Kent, to research that involves paleoecological, paleogeographical, and functional morphological elements which, in turn, will be communicated to other students. Because decapods are known to virtually everyone, they form an excellent group to use to inform the public about ancient patterns of diversity and the relationship between the morphology of organisms, variations in their environmental requirements, and their adaptability to different physical conditions. This will be conveyed in a professionally constructed display which has the potential to be exhibited in museums and universities around the country. Small kits designed for use in elementary and middle schools will be available to allow students to make their own observations about the adaptations of decapods to their environment and its effect on diversity. Published papers and presentations on results of research at meetings will be prepared throughout the course of the research. Because the study of modern biodiversity is a concern of the general public, presentations to broader audiences as well as geology classes will provide a broad historical context for understanding modern patterns of diversity. Data entered into Paleobiology Database and Ohio Data Resource Commons will be openly available to other researchers and the general public. Combined, the databases will assure archival storage and public access, following a proprietary period.
The media are the most pervasive disseminators of informal science education in this country. Watching commercial and non-commercial television will provide you with information on alligators or zygotes, bio-fuels or stem cells, polar bears or hurricanes. Radio, too, provides discussions of genetics and global warming and birds and stars. Often radio and television will cover science issues with a contextual overlay of politics or morality, so viewers and listeners can sense how they and their community relate to it. But for excitement, going to the theater to see an IMAX movie will take you
Produced by National Geographic Television and funded in part by the National Science Foundation (NSF), Alien Deep is a multi-platform media project designed to increase public literacy about: the fundamental principles and concepts underlying ocean systems and functions, the importance and challenges of oceanographic research and exploration, and the impact of the ocean on humanity and humanity’s impact on the ocean. The centerpiece of the project is a five-part mini-series that premiered on the National Geographic Channel in 2012. In addition to the five episodes, which were also made
DATE:
TEAM MEMBERS:
Knight Williams Inc.Valerie Knight-WilliamsDivan WilliamsRachel TeelEric AndersonGabriel Simmons
A team from Michigan State University, in partnership with six science, art-science, and art museum venues around the country and with the assistance of researchers at Georgia Institute of Technology, is implementing an EAGER project to conduct ongoing experiments on the chemical precursors to life as exhibit experiences for visitors to these venues. The experiments, to be run over the course of several months as the exhibit travels around the country, expand on the 1950s' work of Stanley Miller and Harold Urey, which continues to stimulate new investigations and publications, including experiments being conducted on the International Space Station. The experiments/exhibits share key features across the three different kinds of venues, allowing the team to study and compare the impacts on the various publics of engaging them in real-time science experiments. Two major goals are (1) to explore new ways to attract public interest in science by performing in public settings previously untried experiments on the chemical precursors to life, and (2) to investigate how the context of different kinds of venues and their visitor characteristics affect how visitors interpret the experience and what they learn. The team is also exploring how various data visualization representations can be designed to foster public interest and understanding. The intent is to develop an approach that has potential applications to other STEM content domains and expanding the reach to broader public audiences.
The purpose of this research study was to investigate: students' schema structure for human evolution; their idiosyncratic conceptual change after visiting a museum exhibition; the role of alternative frameworks during learning; and the function of affect in learning. Thirty eleventh and twelfth grade high school students, eleven males and nineteen females, visited an exhibition on human evolution and participated in an opened-ended pre and post interview and Likert-type questionnaire. The interviews were transcribed, segmented by using shifts in natural language, and pre and post schema
This is an interview with paleontologist Stephen Jay Gould exploring his personal background, career accomplishments, research on Darwinism, and views regarding religion.
Although schools traditionally take their pupils to Natural History Museums, little has been elicited about either the overall content of the conversations generated by such groups or of the effect on content in the presence of an adult. Transcripts were coded using a systemic network which had been designed based on pilot studies. A range of variables was created from the coded data. The number of conversations that contained at least one reference to the designated categories were ascertained overall and those of the three sub-groups, pupils and teacher, pupils and chaperone and pupils alone
This chapter explores natural history exhibits, particularly dioramas, with regard to both art and authenticity. Dioramas are treated as a novel form of scientific model.
The Maryland Science Center (MSC) Astrobiology project includes an interactive exhibit and Davis Planetarium program for school and public museum visitors, exploring the search for life in our Solar System, the search for exoplanets and an understanding of extreme forms of Earthly life. Four day-long Educator Workshops have taken place during the project with a total of 179 teachers participating.
Baltimore’s MSC is the lead institution, with the project led by PI Van Reiner, MSC President and CEO and Co-PI Jim O’Leary, MSC Senior Scientist, and science advisors consisting of astronomers, biologists, a geologist and educators representing NASA Goddard Space Flight Center, Space Telescope Science Institute, Carnegie Institute of Washington, Johns Hopkins University and the University of Maryland and Maryland School for the Blind.
The project provides visitors with a sense of the Milky Way Galaxy’s size and composition, the galaxy’s number of stars and potential planets, and the number of other galaxies in the Universe. The exhibit explores Earthly extremophiles, what their survival signifies for life elsewhere in the Solar System, and examines possibilities for life on Mars and moons of the Solar System, explores techniques used to detect exoplanets and NASA’s missions searching for exoplanets and Earth-like worlds. The project looks to provide a sense of the vast number of potential planets that exist, the hardiness of Earthly life, the possibilities for life on nearby planets and moons, and the techniques used to search for exoplanets.
The exhibit and Planetarium program premiered November 2, 2012, and both remain as long-term Science Center offerings. Since opening, MSC has hosted nearly a million visitors, and with the Life Beyond Earth exhibit located in a highly trafficked area near the Davis Planetarium and Science On a Sphere, the great majority of visitors have experienced the exhibit. The We Are Aliens program in the Davis Planetarium has been seen by more than 26,000 visitors since opening.