The 2009 International Year of Astronomy coincides with the dimming and brightening of a variable star that can be seen with the naked eye. The American Association of Variable Star Observers and the Adler Planetarium and Astronomy Museum are organizing a new citizen program called STARS (Science Through Astronomical Research) that engages 8,000 amateur astronomers and non-astronomers in measuring brightness changes in the star Epsilon Aurigae, analyzing their observational data, and developing and testing their own explanatory hypotheses. The goals of the project are to increase public understanding of science by involving citizens in active research on an accessible, yet enigmatic astronomical phenomenon, and disseminate lessons learned to other citizen science programs. A mixed methods evaluation study is monitoring the implementation and impact of the program. The project should (1) increase the number of non-astronomers who take up astronomy as a hobby, (2) increase the number of amateur astronomers who participate in other citizen science-related astronomical activities (for example, sky surveys), and (3) increase the number of non-science oriented citizens who become more interested in science. A research study is investigating how a large-scale informal citizen science project changes public understanding of scientific inquiry.
The Astronomical Society of the Pacific, in collaboration with the Institute for Learning Innovation, will implement "Sharing the Universe." This research and implementation project is designed to include both a comprehensive, two-phased research component, as well as a large-scale national dissemination. The intended impacts are to improve the quality and effectiveness of informal science education activities provided by amateur astronomers; increase the frequency of public engagements in astronomy; and broaden the variety of events and diversity of the outreach to include underserved and underrepresented audiences. The project will create a community of practice using club leaders to improve astronomy clubs nationwide through research tools, training and outreach skills. Project deliverables include Phase I research which is designed to gain an understanding of how outreach-orientated clubs function and identify strategies that make successful clubs effective. Phase II will examine a core group of 20 clubs in detail to further understand the outreach culture while using interventions developed from the Phase I results such as a training DVD, Online Resource Library, Outreach Toolkit and a robust community of practice. The final deliverable will be the dissemination of proven strategies and best practices revealed by the research to 200 diverse astronomy clubs across the country. Strategic impact will be realized in increased outreach capacity among amateur astronomers and a strong model for astronomy clubs with proven best practices and resources. It is anticipated this project will reach more than 4,400 amateur astronomers and indirectly impact more than one million Americans in astronomy clubs in four years. Inverness Research will conduct the summative evaluation of the project.
In this Communicating Research to Public Audiences (CRPA) project, the University of Washington and the Pacific Science Center (PSC) are highlighting the results of Dr. Kelley's active research discoveries about deep-sea life located on active hydrothermal vents of the ocean floors (OCE-0426109). The STEM content of this project includes oceanography, marine biology, and ecology. The project team will develop a multimedia, interactive kiosk exhibit that builds on the existing Portal to the Public project at PSC. Kelley\'s graduate students are actively involved in the exhibit and outreach components. The target audience for "Life in Extreme Environments" is the approximately 800,000 U.S. and international visitors to PSC, including a significant number of urban, underserved minorities. This CRPA project will become a component of the existing Portal to the Public exhibit. This exhibit kiosk will subsequently be made available to other scientists to promote research and related topics in their respective disciplines. The exhibit will be fabricated and evaluated by PSC staff.
In this Communicating Research to Public Audiences (CRPA) project, the University of Washington and the Pacific Science Center (PSC, Seattle) are highlighting the results of PI Kelley's active research discoveries about deep-sea life located on active hydrothermal vents of the ocean floors (NSF award OCE 0426109). The STEM content of this project includes oceanography, marine biology, and ecology. The project team will develop a multimedia, interactive kiosk exhibit that builds on the existing Portal to the Public project at the PSC. Kelley's graduate students are actively involved in the exhibit and outreach components of this CRPA. The target audience for 'Life in Extreme Environments' is the ~800,000 U.S. and international visitors to the PSC, which also includes a significant number of urban, underserved minorities. This CRPA project is a component of the existing Portal to the Public exhibit. After \'Life in Extreme Environments\' ends at the PSC, this exhibit kiosk will be made available to other scientists to promote research and related topics in their respective disciplines. The exhibit is being fabricated and evaluated by the staff at the Pacific Science Center.
Tornado Alley is a large-format 2D/3D film and comprehensive outreach program exploring the science behind severe weather events. The project focuses on cutting-edge developments in the fields of meteorology and earth science, demonstrating weather monitoring technologies. The project spotlights the current research of the VORTEX 2 (V2) project--the most ambitious effort ever to understand the origins, structure and evolution of tornadoes. The principle target audiences are science museum audiences, with additional special attention to under-served, rural mid-western communities, which will be served by digital 3D screenings. The film will be produced by Graphic Films and Giant Screen Films and distributed by Giant Screen Films. The Franklin Institute will create and manage outreach to professional audiences. Informal Learning Solutions will conduct formative evaluation; RMC Research Corporation will conduct summative evaluation of the project. The film, produced by Paul Novros (PI) and directed by Sean Casey, will collaborate closely with the V2 team, led by Dr. Josh Wurman, and consult with the project advisors to assure clarity and accuracy of the science being presented. A distance-learning initiative to serve educators--both formal and informal--will be managed by Karen Elinich (co-PI) of The Franklin Institute. The project's innovative outreach strategies leverage the mobility of the tornado intercept vehicle (TIV) built by Sean Casey, and the Doppler on Wheels and MGAUS (weather balloon vehicles) to bring scientists and weather-monitoring technology into direct contact with audiences. Outreach to underserved audiences, especially rural audiences, will provide opportunities for interactions with V2 PIs and their students, who serve as role models in science careers. In addition, cyber infrastructure will allow groups of educators to interact remotely with V2 researchers and experience visualizations of weather data. The film and ancillary materials will be translated into Spanish. The project serves as a model for the dissemination of the methods and results of a specific major NSF hard-science research endeavor to the general public through ISE products and activities. The goal of the project is for the audience to increase their knowledge and understanding of the scientific process, learn what meteorologists do, what technologies are used in meteorology and weather science and the factors and forces in meteorological events. It is intended that young audience members will also develop and interest in weather science and potential careers in science and engineering. In the first five years of the film\'s release, the audience is anticipated at 7 million plus. In addition, the live outreach events are expected to engage approximately 40,000-60,000 individuals.
The Community Collaborative Rain, Hail and Snow (CoCoRaHS) network is an existing backyard citizen science project that is enhancing the research efforts of scientists and promoting climate literacy among the public by engaging volunteers in precipitation-monitoring activities. More than 14,000 volunteer citizen scientists of all ages in 50 states currently measure precipitation from their homes, schools, public areas and businesses using rain gauges, snow rulers and hail pads, and then post their data to the CoCoRaHS website. Building on this work, the current Broad Implementation project is enhancing CoCoRaHS' network and making it possible for more people from across the country to monitor precipitation. The enhancements include (1) installing a new generation of data entry, storage, management, analysis and visualization tools, (2) collecting evapo-transpiration data to improve scientists' water cycle models, (3) revising and creating new citizen science training materials (print and multimedia), (4) expanding national collaboration and outreach via integration of social networking and mobile device technologies, and (5) developing a standards-aligned K-12 education outreach component that has a national reach. Citizen scientists are being equipped and trained to be neighborhood climate data analysts and are provided with new tools for data analysis and inquiry learning. The enhancements will allow new collaborations between museums and science centers, targeted outreach to underserved audiences, and recruitment of thousands of new volunteers for the CoCoRaHS network. Through a partnership with the National Association of Conservation Districts, the project will conduct educational outreach to all 3,140 counties in the country. Anticipated results include increased numbers of people, particularly younger people, participating in precipitation-monitoring activities, and increased participant knowledge, skills, interest, and involvement in climate science and scientific inquiry. Building the project's capacity to involve 20,000-50,000 more volunteers across nation will increase the density of precipitation-monitoring stations, providing scientists with higher quality weather data.
The ScienceMakers: African Americans and Scientific Innovation is a three-year project designed to increase awareness of the contributions of African American scientists, raise awareness of STEM careers, and increase understanding of STEM concepts through the creation of education, media, and career resources. The project team is supplemented with an extensive advisory board of STEM education, museum, and community professionals, as well as representatives from partnering science centers. Project partners include the St. Louis Science Center, Liberty Science Center, New York Hall of Science, Pacific Science Center, Franklin Institute, COSI Columbus, Lawrence Hall of Science, SciWorks, Detroit Science Center, and MOSI Chicago. Additional collaborators include middle and high schools with high minority populations. Project deliverables include a fully accessible multi-media archive of video oral histories of 180 African American scientists and web resources and contests utilizing Web 2.0 and 3.0 applications such as social networking tools that foster engagement and build community around the ScienceMakers. Public programs for youth and adults at science museums, after-school programs, and community organizations highlight African American contributors, and encourage interest in science and science careers and the ScienceMakers DVD Toolkit expand the reach of this innovative project. Intended impacts for youth and adults consist of increased awareness of STEM concepts and career options, exposure to African American scientists, awareness of the contributions of minority scientists, and 21st century skills. Intended impacts on professional audiences include increased awareness and understanding of STEM careers and workforce diversity, 21st century skills, and STEM career options. The project evaluation, conducted by Knight-Williams Research Communications, utilizes a mixed-methods approach. The evaluation assesses the impact of the oral history archive, public programs, and other deliverables on public and professional audiences' knowledge, interest, and awareness of the contributions of African American scientists, STEM concepts, and STEM careers. The evaluation also includes an ethnography which examines factors that contribute to success in STEM careers by African-American scientists. The ScienceMakers significantly expands the world\'s largest searchable oral history archive and may have an enduring impact on research and practice in the field of informal science education. The project has the potential to enrich programs and exhibits, while raising awareness of the contributions of African-American scientists among informal science education professionals and the general public.
The purpose of the ETOM project is to develop a "user's guide" to the present and projected energy resources of our planet and the relationship to climate change. It will prototype and evaluate new ways of providing the public with the information and online tools to make wiser choices about powering homes, schools, businesses, and communities. The project uses a hybrid model of science communication that includes video, in-person presentations, and Web 2.0 social networking. National PBS broadcasts of three hour long programs, with two new specials premiering on Earth Day 2012, will reach large audiences influencing the understanding of climate change and the potential of renewable energy in measurable ways. Events at four science centers and natural history museums located across the country will explore how increased knowledge of Earth Science through in-person presentations informs behavior. The project's social networking tools and resources will motivate and support accessible real-world activities. An online "Energy Gauge" will allows users to find rebates, explore driving and diet, and make choices that can save money and reduce carbon emissions. The core project team includes Richard Alley, chair of the National Academy of Sciences panel on Abrupt Climate Change, who will host the television programs. Outreach partners include science centers across the nation and the Society for the Advancement of Chicanos and Native Americans in Science. The project will leverage existing NSF-supported projects such as the Future Earth Initiative led by the Science Museum of Minnesota. Rockman Et Al will evaluate the project impacts working from front-end to summative stages to understand the reactions of media, online, and on-site users. Proposed project impacts include increasing participants' understanding of how the Earth's system is affected by human uses of energy and the impact of those energy uses on climate. Other impacts include changes in attitude and behavior affecting individual uses of energy. Evaluations will be conducted with TV show viewers as well as science center and website visitors using quasi-experimental, quantitative, and qualitative study designs.
The Space Science Institute, in collaboration with the Catawba Science Center (North Carolina), the New Mexico Museum of Natural History and Science, the American Library Association, and the Astronomical Society of the Pacific propose to develop a multi-pronged project on the topic of asteroids. Content areas will include: Asteroids ? Up-close and Personal; Deep Impact; and Planetary Protection. Deliverables will include a 2,500 square-foot traveling exhibit for small to mid-sized museums; four, 300 square-foot "small exhibit components" (SECs) for libraries, community centers, etc.; Web 2.0 sites for the project developers and for the public; public education programs; professional development programs for informal STEM professionals; and a study of how Web 2.0 can be used to improve the evaluation of Web sites. The project team will be experimenting with virtual prototyping of exhibit modules as a way to improve exhibit development, especially with team members who are around the country. Teens from around the country will be enlisted to help inform the project on its deliverables. The Association of Science-Technology Centers will manage the exhibit tour. The Institute for Learning Innovation will conduct the evaluation activities, including the study of Web 2.0 and virtual prototyping tasks.
Soundprint Media Center, Inc. and RLPaul Productions, produced a cross-media package that includes a website (capecosmos.org), radio programs, and museum-based family events related to the 50th anniversary of the Space Program. The project, Out of This World (OOTW), is a program that sought to stimulate interest in science by presenting the little known stories of African-Americans and women who contributed to the U.S. Space program, and to provide historical context for the scope and reach of the nascent aerospace science program. Through radio documentaries and collaborations with science centers and museums, including the Smithsonian's National Air and Space Museum (NASM), OOTW broke new ground in developing an integrated media project that reached different audiences. The deliverables included: three radio documentaries (; an educational DVD package with 20 video mini-documentaries, curator interviews with space research pioneers and a learning guide; an interactive website that recreates a space mission circa 1961, and a series of live two-way video conferences between NASM and some 14 partner museums and science centers. OOTW used the power of investigative journalism and the reach of public radio and local science museums to connect with adults and school-age children, to cut across demographic categories, and to include a significant number of minority and at-risk children.
The Experiential Science Education Research Collaborative (XSci) at the University of Colorado Denver has established a museum educator/theater network of eight museums around the country, pairing larger with smaller institutions. The Association of Science-Technology Centers, the NASA Astrobiology Institute, and the Astronomical Society of the Pacific and several other organizations also are collaborators. The primary audience is informal science educators; secondary audiences are museum and science center visitors. The Science Theater Education Programming System (STEPS) is a technology the allows educators to create their own media-enhanced live theatrical presentations of science programs that include dynamic content, interactive virtual characters, and multiple plot-lines and endings to shows. The initial set of theater programs focus on astrobiology, along with a suite of training programs and communication formats for educators. The STEPS technology allows these programs to be delivered both on site and via outreach, depending on the goals of each organization. An in-depth research component is examining the impact of the project\'s designed community of practice structure utilizing team leadership theory in terms of professional identity construction for participating informal educators. Deliverables include: the museum partnership network, the STEPS system and programs, professional development tutorials and workshops, evaluation of the programs, and research products, among others.
In partnership with the University of Pennsylvania's Graduate School of Education, The Franklin Institute Science Museum will develop, test, and pilot an exportable and replicable cyberlearning exhibit using two cutting edge technologies: Augmented Reality (AR) and Virtual Reality (VR). The exhibit's conceptualization is anchored in the learning research vision of the NSF-funded workshop Cyberinfrastructure for Education and Learning for the Future (Computing Research Association, 2005). The incorporation of VR and AR technologies into the Franklin Institute's electricity and Earth science exhibits is an innovation of traditional approaches to hands-on learning and will improve the quality of the learning experience for the primary audience of families with children and elementary school groups. The project has implications for future exhibit development and more broadly, will provide new research on learning on how to incorporate cyberlearning efforts into traditional exhibits. Fifteen participating exhibit developers across the ISE field will assist in the evaluation of the new exhibit; receive training on the design and development of VR and AR exhibits for their institutions; and receive full access to the exhibit's new software for implementation at their informal learning sites. The technology applications will be developed by Carnegie Mellon University's Entertainment Technology Center--leaders in the field in Virtual Reality design and development. Front-end and formative evaluation will be overseen internally by the Franklin Institute. The Institute for Learning Innovation will conduct the summative evaluation. Research will be conducted by the University of Pennsylvania's Graduate School of Education on the effects of AR and VR technologies on exhibit learning.