Can (and should) there be a "Mediterranean model" of science communication? For those of us who work in the field of science communication in a country which is on the Mediterranean Sea, this has always been a question that spontaneously leaps to mind. This is because we "feel" there is something intangible in our way of communicating science that is rather similar to the way of a French, Spanish (or even Brazilian) colleague of ours, whereas it is slightly different from that of an American or British one. And yet, the more in depth this question is studied in time, the more complex the
DATE:
TEAM MEMBERS:
Pietro Greco
resourceresearchProfessional Development, Conferences, and Networks
In a beautiful Barcelona, bathed in sun, the 8th PCST Congress was celebrated at the beginning of June. Besides the magnificent location of this year, there are several other reasons to commemorate the event. The first reason is that the community of professionals and scholars interested in Public Communication of Science and Technology (science journalists and writers, scientists, sociologists, teachers, historians, science museum curators, etc.) is growing quickly.
At the beginning of the new millennium, science is not only a neutral system or an objective methodology of knowledge, but also the implicit basis of the totality of our culture. Though science and its derivates are omnipresent in daily life, its basic ideologies and functional mechanisms are in most cases not fully visible to the subject. In using the most evolved systematical-critical model of psychoanalysis provided by the French thinker Jacques Lacan (1901-1981), an enlightening analysis of western science can be made, which contributes not only to a better understanding of its own
This article will discuss and comment some of the results obtained by the application of the questionnaire "Public perception of Science and Technology". The questionnaire is a translated and adapted Portuguese version from the original in Spanish produced by the group Centro de Estudios sobre Ciencia, Desarrollo y Educación Superior of Buenos Aires, Argentina.
DATE:
TEAM MEMBERS:
Carlos VogtRafael de Almeida EvangelistaMarcelo Knobel
n June, the 23rd of last year, the US Environmental Protection Agency (EPA) published its Draft Report on the Environment, a report on environmental quality. The EPA is an autonomous federal agency known for its reliability on environmental studies and safeguards. Its Draft Report is considered by Science, the journal of the American Association for the Advancement of Science (AAAS), the nation’s most scientifically reliable analysis on environmental quality. The latest Draft Report makes no reference whatsoever to the changes in global climate.
Compared to expert-to-expert - or peer-to-peer - communication, the language of popular science is characterised by a wider use of figurative devices. This applies to all forms of verbal and non-verbal communication. Specialized texts are characterised by a restricted and rigorous lexicon both in spoken and - even more so - in written language. Namely, a widespread use of terms which are monosemic, unambiguous and non context-dependent terms, and a minimum amount of natural linguistic choices. The few polysemic, ambiguous and context-dependent words encountered in a scientific text are highly
In the last few years, a continuous series of food alerts have caught the attention of the media and the public in Europe. First, eggs and pork contaminated with dioxins; then, "mad cow" disease, while, all along in the background, a battle against genetically modified plants has been in progress. These food alerts have had complex repercussions on the perception of risks associated with food production. Experts have often been divided over these issues, and the uncertainty of scientific data has been indicated on more than one occasion as one of the factors that influence risk perception
In a brief article published by Science last October, British scientists stated that the expression "Public Understanding of Science" (PUS), which was traditionally employed in Anglosaxon societies to refer to the issue of the relationship between science, technology and society, is out-of-date. It should be replaced by "Public Engagement with Science and Technology" (PEST), a new acronym that clearly invites to reconceptualise the relationship between science and the public. The new approach involves the engagement of the public or rather the publics of science, through dialogue, in
In recent weeks, Britain’s Better Regulation Task Force report on scientific research regulation asked the Government to evaluate the risks associated with the development of Nanosciences and Nanotechnologies. The Government was also asked to prove its implementation of a specific policy to protect human, animal and environmental safety, were it to be threatened by the development of this emerging field of knowledge. These requests may sound rather alarming. However, objectively speaking, the precautionary attitude of the Better Regulation Task Force does not differ greatly from that of the U
Communicating modern biotechnologies is certainly no easy task. To tackle such a complex and future-oriented assignment, help may arrive, paradoxically, from the past, from ancient rhetorical tradition, and in particular from Aristotle, the most renowned rhetoric teacher of all time. In his Rhetoric, Aristotle suggested that to be persuasive speakers should make use of widely accepted opinions (endoxa), i.e. the common sense shared by all. Common sense is expressed in common truths and value-laden maxims. Common sense, however, is not flat but dialectical, in that it includes contrasting
What may be defined as the "standard model" of the public communication of science began to develop in the second half of the nineteenth century, gained a clear structure (especially in an Anglo-Saxon context) in the first three decades of the twentieth century and dominated until the nineties. Roughly speaking, the model tends to describe science as a compact social (and epistemic) corpus, largely separated from the rest of society by a type of semipermeable membrane. That is, information and actions can flow freely from science to the rest of society (through the application of technologies
AAAS describes public engagement with science as intentional, meaningful interactions that provide opportunities for mutual learning between scientists and members of the public. Through the Alan I. Leshner Leadership Institute for Public Engagement with Science, AAAS empowers scientists and engineers to practice high-impact public engagement by fostering leaders who advocate for critical dialogue between scientists and the public and lead change to enable their communities, institutions, and others to support public engagement. This report, with additional work on understanding mechanisms for